matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteNormalenform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Normalenform
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

Normalenform

Definition Normalenform der Ebenengleichung


Schule

Gegeben sei die Ebene E durch $ E: \vec x = \vec a + \lambda\cdot{} \vec u + \mu\cdot{} \vec v $.

Sei $ \vec a $ der Ortsvektor zu einem Punkt A der Ebene E,
und sei $ \vec n $ ein Vektor, der auf den Richtungsvektoren $ \vec u $ und $ \vec v $ der Ebene (und damit auf der ganzen Ebene) senkrecht steht, dieser Vektor wird Normalenvektor genannt.

Diesen Normalenvektor kann man mit dem Kreuzprodukt der beiden Spannvektoren relativ schnell ermitteln, es gilt also: $ \vec{n}=\vec{u}\times\vec{v} $

Dann gilt:

$ \vec n \cdot{} \vec x = \vec n \cdot{} \vec a + \lambda\cdot{} \underbrace {\vec n \cdot{} \vec u}_{=0} + \mu\cdot{} \underbrace {\vec n \cdot{} \vec v}_{=0} \Rightarrow E: \vec n \cdot{} \vec x = \vec n \cdot{} \vec a \gdw \vec n\cdot{}\left(\vec x - \vec a\right)=0 $


oder ausführlich in Koordinatenschreibweise:

$ E: \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} \cdot{} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}= \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} \cdot{} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} $


oder prägnanter:

$ E: \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} \cdot{} \left( \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}-\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}\right)=0 $


Multipliziert man die Skalarprodukte aus, erhält man die Ebenengleichung in Koordinatenform:

$ E: n_1 x_1 + n_2 x_2 + n_3 x_3 - (n_1 a_1 + n_2 a_2 + n_3 a_3) =0 $


$ E: n_1 x_1 + n_2 x_2 + n_3 x_3 + d = 0 $


mit

$ d:=(n_1 a_1 + n_2 a_2 + n_3 a_3) $


Hesse-Form der Ebenengleichung

Benutzt man zum Aufstellen der Normalenform der Ebenengleichung einen Normaleneinheitsvektor

$ {\vec n}^0=\bruch{\vec n}{|\vec n|} $

so, dass in der Gleichung

$ {\vec n}^0 \cdot \vec x = {\vec n}^0 \cdot \vec a  \gdw {\vec n}^0 \cdot \vec x - {\vec n}^0 \cdot \vec a=0 $


der Ausdruck $ {\vec n}^0 \cdot \vec a > 0 $ gilt, so heißt diese Normalenform Hesse-Form der Ebenengleichung.


Abstandsbetrachtung mit der Hesse-Form:

Setzt man den Ortsvektor $ \vec p $ eines Punktes P für $ \vec x $ in die Hesse-Form ein, so erhält man die Maßzahl d des Abstands |d| des Punktes P von der Ebene:

$ d=\vec n^0 \cdot{} \vec p - \vec n^0 \cdot{} \vec a=\vec n*(\vec p-\vec a) $

d>0: P und der Ursprung O liegen auf verschiedenen Seiten der Ebene E.
d=0: P liegt auf der Ebene E.
d<0: P und O liegen auf derselben Seite der Ebene E.


Achsenabschnittsform der Ebenengleichung

Sie wird entwickelt aus der Normalenform $ E: n_1 x_1 + n_2 x_2 + n_3 x_3 + n_4 = 0 $, indem man $ n_4 $ auf die andere Seite der Gleichung holt und anschließend durch $ -n_4 $ teilt:

$ \frac{-n_1}{n_4}\cdot{}x_1+\frac{-n_2}{n_4}\cdot{}x_2+\frac{-n_3}{n_4}\cdot{}x_3=1 $

Die Kehrbrüche der Koeffizienten ergeben dann die Spurpunkte der Ebene mit den Koordinatenachsen:

$ S_1\left(\frac{-n_4}{n_1}|0|0\right) $ ;  $ S_2\left(0|\frac{-n_4}{n_2}|0\right) $  ; $ S_3\left(0|0|\frac{-n_4}{n_3}\right) $



Universität


Erstellt: Mo 20.12.2004 von informix
Letzte Änderung: Sa 12.03.2011 um 14:45 von M.Rex
Weitere Autoren: Loddar
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]