matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteLänge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Länge
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

Länge

Definition Länge


  • Länge eines Vektors
  • Länge eines Intervalls
  • (Bogen-) Länge einer Funktionskurve
  • Länge einer Kurve (allgemein)
    -=Schule=-

Definition Länge eines Vektors

Unter dem Betrag eines Vektors $ \vec a $ versteht man die Länge der zu $ \vec a $ gehörenden Pfeile.
Der Betrag wird mit $ |\vec a| $ bezeichnet.

Kennt man die Komponenten des Vektors $ \vec a $ in einem kartesischen Koordinatensystem, so kann man seinen Betrag mithilfe des Satzes des Pythagoras berechnen:


$ \IR^2: \vec a = \begin {pmatrix} a_1\\a_2 \end{pmatrix} \Rightarrow |\vec a| = \wurzel {a_1^{2} + a_2^{2}} $


$ \IR^2: \vec a = \begin {pmatrix} a_1\\a_2\\a_3 \end{pmatrix} \Rightarrow |\vec a| = \wurzel {a_1^{2} + a_2^{2} + a_3^{2}} $


Definition Länge eines Intervalls

Die Länge eines Intervalls $ [a,b] $ berechnet man durch: |b - a| .


Definition (Bogen-) Länge einer Funktionskurve

Sei $ f: [a,b]\to\IR $ eine differenzierbare Funktion, und $ G_f=\{(x,f(x))\ |\ x\in [a,b]\} $ ihr Graph.
Dann heißt
$ L_a^b(f)=\integral_a^b \wurzel{1+f'(t)^2} dt $
die Länge des Graphen von f über dem Intervall $ [a,b] $ .



Universität


Definition Länge einer Kurve

Sei $ f:[a,b]\to V $ eine Kurve in V.
Dann heißt das Supremum über die Längen aller Streckenzüge $ [f(t_0),\ldots,f(t_m)] $, wobei $ t_0,\ldots,t_m $ alle endlichen Folgen $ a\le t_0\le \ldots\le t_m\le b $ durchläuft, die Länge
$ L_a^b(f)=L(f) $
von f.
Ist $ L(f)\le\infty $, so heißt f rektifizierbar.
Quelle: (1)


Wichtige Sätze


Satz Seien V ein normierter endlichdimensionaler $ \IR $-Vektorraum und $ f:I\to V $ eine stückweise stetig differenzierbare Kurve in V.
Dann ist f rektifizierbar, und es gilt
$ L_a^b(f)=\integral_a^b \|f'(t)\| dt $.

Quelle: (1)


Quelle: (1) isbn3411141816

Erstellt: Sa 20.11.2004 von informix
Letzte Änderung: Mo 22.11.2004 um 15:14 von informix
Weitere Autoren: Marc
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]