matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperIrreduzibilität von Polynomen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Irreduzibilität von Polynomen
Irreduzibilität von Polynomen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Irreduzibilität von Polynomen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:58 So 04.07.2010
Autor: skoopa

Aufgabe
Sei [mm] f:=X^4+3X^3+X^2-2X+1 \in \IZ[X] [/mm] ein Polynom.
Folgern Sie: f ist in [mm] \IQ[X] [/mm] irreduzibel.

Hallo Freunde der Algebra!
Ich bearbeite grad schon seit einiger Weile die obige Aufgabe. Leider komme ich nicht weiter. Ich habe eine Lösung vor mir, weiß allerdings nicht, warum die Argumentation so gilt. Und zwar:

Sei [mm] f_{p} [/mm] f modulo p gerechnet.
[mm] f_{2} [/mm] zerfällt in einen Linearfaktor und ein Polynom vom Grad 3.
[mm] f_{3} [/mm] ist irreduzibel, hat also insbesondere keine Nullstelle.
[mm] \Rightarrow [/mm] f irreduzibel in [mm] \IZ[X]. [/mm]

Jetzt frage ich mich eben, warum und wie man von der Darstellung von f in verschiedenen Restklassenkörpern (oder reichen sogar Ringe) auf die Irreduzibilität in [mm] \IZ[X] [/mm] schließen kann?
Und dann hab ich schon mehrfach gelesen, dass aufgrund des Lemmas von Gauß gilt: f irreduzibel in [mm] \IZ[X] \Rightarrow [/mm] f irreduzibel in [mm] \IQ[X]. [/mm]
Somit wäre ich dann ja durch.
Kann mir jemand weiterhelfen?
Danke schonmal!
Viele Grüße!
skoopa

        
Bezug
Irreduzibilität von Polynomen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:12 So 04.07.2010
Autor: steppenhahn

Hallo skoopa [ :-) ],

> Sei [mm]f:=X^4+3X^3+X^2-2X+1 \in \IZ[X][/mm] ein Polynom.
>  Folgern Sie: f ist in [mm]\IQ[X][/mm] irreduzibel.
>  Hallo Freunde der Algebra!
>  Ich bearbeite grad schon seit einiger Weile die obige
> Aufgabe. Leider komme ich nicht weiter. Ich habe eine
> Lösung vor mir, weiß allerdings nicht, warum die
> Argumentation so gilt. Und zwar:
>  
> Sei [mm]f_{p}[/mm] f modulo p gerechnet.
>  [mm]f_{2}[/mm] zerfällt in einen Linearfaktor und ein Polynom vom
> Grad 3.
>  [mm]f_{3}[/mm] ist irreduzibel, hat also insbesondere keine
> Nullstelle.
>  [mm]\Rightarrow[/mm] f irreduzibel in [mm]\IZ[X].[/mm]
>  
> Jetzt frage ich mich eben, warum und wie man von der
> Darstellung von f in verschiedenen Restklassenkörpern
> (oder reichen sogar Ringe) auf die Irreduzibilität in
> [mm]\IZ[X][/mm] schließen kann?
>  Und dann hab ich schon mehrfach gelesen, dass aufgrund des
> Lemmas von Gauß gilt: f irreduzibel in [mm]\IZ[X] \Rightarrow[/mm]
> f irreduzibel in [mm]\IQ[X].[/mm]
>  Somit wäre ich dann ja durch.

Hier habe ich das schon gefragt.

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]