matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisFouriertransformierte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionalanalysis" - Fouriertransformierte
Fouriertransformierte < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fouriertransformierte: Berechnung
Status: (Frage) beantwortet Status 
Datum: 21:58 Mi 05.12.2012
Autor: mikexx

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Hallo, ich möchte gerne die Fouriertransformierte berechnen von

$\exp(-rx), r>0$.

Also ich bin bis jetzt so weit:

$\mathcal{F}(e^{-rx})(\omega)=\int\limits_{-\infty}^{\infty}e^{-rx}e^{-i\omega x}\, dx=\int\limits_{-\infty}^{\infty}e^{-x(r+i\omega)\, dx$


Wie berechne ich das weiter?

Kann mir bitte jemand helfen dabei?


Dankeschön!

        
Bezug
Fouriertransformierte: Antwort
Status: (Antwort) fertig Status 
Datum: 22:22 Mi 05.12.2012
Autor: chrisno

Wie lautet die Stammfunktion für [mm] $e^{ax}$? [/mm] Falls Du sie nicht kennst, leite einfach mal [mm] $e^{ax}$ [/mm] ab. Das gibt dann schnell eine Idee. Anschließend ersetzt Du a durch [mm] $-(r+i\omega)$. [/mm]

Bezug
                
Bezug
Fouriertransformierte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:26 Mi 05.12.2012
Autor: mikexx

Die Stammfunktion von [mm] $e^{ax}$ [/mm] lautet [mm] $\frac{e^{ax}}{a}$. [/mm]

Demnach

[mm] $\frac{e^{-(r+iw)x}}{-(r+iw)}$? [/mm]

Bezug
                        
Bezug
Fouriertransformierte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:31 Do 06.12.2012
Autor: mikexx

Aber wie berechne ich jetzt das Integral?

Also ich habe bis jetzt

[mm] $\int\limits_{-\infty}^{\infty}e^{x(-r-iw)}\, dx$=\lim\limits_{d\to\infty}\left[\frac{e^{d(-r-iw)}-e^{-d(-r-iw)}}{(-r-iw)}\right]$ [/mm]

Wie berechnet man das?

Bezug
                                
Bezug
Fouriertransformierte: Antwort
Status: (Antwort) fertig Status 
Datum: 13:23 Do 06.12.2012
Autor: dennis2

Hallo, mikexx!

Das ist schon korrekt so, nur: Dieses Fourierintegral existiert nicht, die Aufgabe ist wohl fehlerhaft formuliert!

Schau' nochmal nach.

Bezug
                        
Bezug
Fouriertransformierte: Antwort
Status: (Antwort) fertig Status 
Datum: 13:24 Do 06.12.2012
Autor: dennis2

Korrekt, nur: Die Aufgabe macht so keinen Sinn, das Integral ex. nicht.


Bezug
        
Bezug
Fouriertransformierte: Antwort
Status: (Antwort) fertig Status 
Datum: 13:44 Do 06.12.2012
Autor: Walde

Hi Leute,

diese Frage steht doch bestimmt im Zusammenhang mit dieser Frage und zwar Punkt (iii).

Im dortigen Kontext muss aber bzgl. r Fouriertransformiert werden, oder? Vielleicht können sich die andern das mal ankucken. Meiner Einschätzung nach, taucht da eine Funktion in der Form [mm] f(t,x)=e^{-t^2x} \quad x,t\in\IR [/mm] auf, muss aber bzgl t (rück-)fouriertransformiert werden. (und das sollte doch gehen)

Lg walde

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]