matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenAlle Lösungen der Gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Alle Lösungen der Gleichung
Alle Lösungen der Gleichung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Alle Lösungen der Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:27 Mi 26.10.2011
Autor: Pruckcy

Aufgabe
Bestimmen sie alle Lösungen der Gleichung
[mm] \bruch{dw}{du}=-\bruch{3u+4w+1}{4u+2w+3} [/mm]

Hallo,
könnte mir jemand vielleicht bei diese Aufgabe helfen? Irgendwie komme ich nicht weiter :-(
Hier was ich bisher habe:
Betrachte die Determinante
[mm] \vmat{ 3 & 4 \\ 4 & 2 }=-2\not=0 [/mm]
Löse das Lineare Gleichungssystem:
3u+4w+1=0
4u+2w+3=0
u=-1 und [mm] w=\bruch{1}{2} [/mm]
Sei nun [mm] \overline{u}:=u-u_{0}=u+1 [/mm]
Sei nun [mm] \overline{w}:=w-w_{0}=w-\bruch{1}{2} [/mm]
Die DGL lautet nun:
[mm] \bruch{\overline{w}(\overline{u})}{d\overline{u}}=w'(\overline{u}+u_{0})=...=-\bruch{3\overline{u}+4\overline{w}(\overline{u})}{4\overline{u}+2\overline{w}(\overline{u})}=-\bruch{3+4\bruch{\overline{w}(\overline{u})}{\overline{u}}}{4+2\bruch{\overline{w}(\overline{u})}{\overline{u}}} [/mm]

Jetzt habe ich eine homogene DGL und jetzt komme ich irgendwie nicht weiter. Habe versuche zu substitueren und zwar:
[mm] \bruch{\overline{w}(\overline{u})}{\overline{u}}=y(\overline{u}) [/mm]
aber irgendwie wird die DGL dann so komisch, dass ich sie dennoch nicht lösen kann. Habe ich vielleicht sogar einen ganz falschen Ansatz gewählt? Vielen Dank für eure Hilfe!

        
Bezug
Alle Lösungen der Gleichung: jacobische DGL
Status: (Antwort) fertig Status 
Datum: 13:05 Mi 26.10.2011
Autor: Martinius

Hallo,

wir hatten das Thema Jacobi-DGL schon einmal vor einiger Zeit.

[guckstduhier]

https://vorhilfe.de/read?t=759567

und hier:

http://de.wikipedia.org/wiki/Jacobische_Differentialgleichung


LG, Martinius

Bezug
                
Bezug
Alle Lösungen der Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:21 Mi 26.10.2011
Autor: Pruckcy

Danke Dir!
Unser Prof hatte diese Art von DGL nicht benannt, so dass du mir einen sehr großen Dienst erwiesen hast ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]