matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungAbleitungsbestimmung!
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differenzialrechnung" - Ableitungsbestimmung!
Ableitungsbestimmung! < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungsbestimmung!: Rückfrage!
Status: (Frage) beantwortet Status 
Datum: 21:58 Mi 06.12.2006
Autor: Blackpearl

Aufgabe
Bestimmung der Ableitung mit der h-Methode!

Hallo Leute,

Ich sitze gerade hier und lerne für meine demnächst anstehende Mathe Klausur.
Mein Problem -> in meinem Heft stehen die Themenbereiche nun finde ich aber nichts genaues mehr ueber dieses Thema!

Hier steht:
"Themen der Klausur:
...
- Bestimmung der Ableitung mithilfe der h-Methode.
..."
Könntet ihr mir helfen. Ich bräuchte da mal ein paar kleine Aufgaben um mir deutlich zu machen worum es geht.

Danke :P

Eure BlacKky

        
Bezug
Ableitungsbestimmung!: h-Methode
Status: (Antwort) fertig Status 
Datum: 22:05 Mi 06.12.2006
Autor: Loddar

Hallo Blackpearl!


Unter der h-Methode versteht man die Ermittlung der Ableitung mittels Differenzenquotienten in der Form:

[mm] $f'(x_0) [/mm] \ := \ [mm] \limes_{h\rightarrow 0}\bruch{f(x_0+h)-f(x_0)}{h}$ [/mm]


[guckstduhier] für Beispiel :  https://matheraum.de/read?t=205885
Ansonsten hier mal etwas stöbern im Matheraum (Forum: Differenzialrechnung).


Gruß
Loddar


Bezug
                
Bezug
Ableitungsbestimmung!: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:09 Mi 06.12.2006
Autor: Blackpearl

Ich schau ma rein!

Danke für deine Express-Antwort! :D

Bezug
        
Bezug
Ableitungsbestimmung!: Antwort
Status: (Antwort) fertig Status 
Datum: 22:14 Mi 06.12.2006
Autor: MontBlanc

Hi,
zur verdeutlichung hier ein Beispiel:

[mm] f(x):=\bruch{1}{2}*x^{2} x_{0}=2 [/mm]

[mm] m(h)=\bruch{f(x_{0}+h)-f(x_{0})}{h} [/mm]

[mm] m(h)=\bruch{\bruch{1}{2}*(2+h)^{2}-2}{h} [/mm]

[mm] m(h)=2+\bruch{1}{2}*h $\rightarrow [/mm] 2$  für $h [mm] \rightarrow [/mm] 0$

Das bedeutet jetzt, dass die Steigung für $h [mm] \rightarrow [/mm] 0$ 2 beträgt, d.h die Steigung im Punkt [mm] x_{0}=2 [/mm] ist gleich 2

Hoffe dass dir das weiter geholfen hat.

Bis denne

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]