matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraAbbildung zwischen Mengen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Abbildung zwischen Mengen
Abbildung zwischen Mengen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildung zwischen Mengen: Frage
Status: (Frage) beantwortet Status 
Datum: 20:34 Sa 06.11.2004
Autor: BiliAgili

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

f : M  [mm] \to [/mm] N eine beliebige Abbildung zwischen Mengen und A1, A2 beliebige teilmengen von M so gilt:

f(A1  [mm] \cup [/mm] A2) = f(A1)  [mm] \cup [/mm] f(A2)

Ich möchte gerne einen Lösungsansatz haben wie ich dies beweisen könnte oder Aufschreiben könnte. Würde mich über eine Antwort freuen.

        
Bezug
Abbildung zwischen Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:05 Sa 06.11.2004
Autor: Marc

Hallo BiliAgili,

[willkommenmr]

exakt diese Frage wurde hier bereits mehrmals gestellt:

z.B. https://matheraum.de/read?t=21214

Vielleicht helfen dir die dortigen Ausführungen ja bereits weiter, falls nicht frage einfach nach.

Viele Grüße,
Marc

Bezug
        
Bezug
Abbildung zwischen Mengen: Ansatz richtig ?! Frage
Status: (Frage) beantwortet Status 
Datum: 18:17 So 07.11.2004
Autor: BiliAgili

f : M   N eine beliebige Abbildung zwischen Mengen und A1, A2 beliebige teilmengen von M so gilt:

wenn f^-1 (B1  [mm] \cup [/mm] B2) = f^-1(B1)  [mm] \cup [/mm] f^-1(B2)

dann: sei y  [mm] \in [/mm] f^-1(B1 [mm] \cup [/mm] B2), dann gilt y  [mm] \in [/mm] f^-1 und x  [mm] \in [/mm] (B1 [mm] \cup [/mm] B2).
Daraus folgt y  [mm] \in [/mm] f^-1 und x  [mm] \in [/mm] B1 oder x  [mm] \in [/mm] B2 ... usw

Ist der Ansatz bis dahin richtig oder hab ich etwas übersehen darf man sowas überhaupt machen ?!

Würd mich über eine schnelle antwort freuen

Gruß Peter

Bezug
                
Bezug
Abbildung zwischen Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:33 Do 11.11.2004
Autor: Julius

Hallo Peter!

Dein Ansatz könnte halbwegs richtig sein, ist aber relativ hingesaut und daher schlecht nachzuvollziehen. Benutze bitte demnächst unseren Formel-Editor.

Also:

Ist $x [mm] \in f^{-1}(B_1 \cup B_2)$, [/mm] dann gibt es ein $y [mm] \in B_1 \cup B_2$ [/mm] mit

$f(x) = y$.

Für dieses $y$ gilt: $y [mm] \in B_1$ [/mm] oder $y [mm] \in B_2$. [/mm]

Es gibt also ein [mm] $y_1 \in B_1$ [/mm] mit

$f(x) = [mm] y_1$ [/mm]

oder ein [mm] $y_2 \in B_2$ [/mm] mit

$f(x) = [mm] y_2$. [/mm]

Daraus folgt:

$x [mm] \in f^{-1}(B_1)$ [/mm]    oder    $x [mm] \in f^{-1}(B_2)$, [/mm]

also:

$x [mm] \in f^{-1}(B_1) \cup f^{-1}(B_2)$. [/mm]

Ist umgekehrt

$x [mm] \in f^{-1}(B_1) \cup f^{-1}(B_2)$, [/mm]

so gilt:

$x [mm] \in f^{-1}(B_1)$ [/mm]    oder    $x [mm] \in f^{-1}(B_2)$, [/mm]

d.h. es gibt ein [mm] $y_1 \in B_1$ [/mm] mit

$f(x) = [mm] y_1$ [/mm]

oder ein [mm] $y_2 \in B_2$ [/mm] mit

$f(x) = [mm] y_2$. [/mm]

Es gilt aber: [mm] $y_1 \in B_1 \cup B_2$ [/mm] und [mm] $y_2 \in B_1 \cup B_2$, [/mm]

d.h. es gibt in jedem Fall ein $y [mm] \in B_1 \cup B_2$ [/mm] mit

$f(x) = y$.

Daraus folgt:

$x [mm] \in f^{-1}(B_1 \cup B_2)$. [/mm]

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]