matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Startseiteinvers
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
invers
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

invers

Matrizen invertieren

Um zu einer gegebenen Matrix A die inverse Matrix $ A^{-1} $ zu finden,
löst man die Matrizengleichung $ A * X = E $.
Dabei ist $ E $ die Einheitsmatrix, die auf der Diagonalen 1 stehen hat und auf den anderen Plätzen 0:
$ (a_{i,j}) = 1 $ falls i=j, sonst $ (a_{i,j}) = 0 $.
X ist dann die inverse Matrix, die man mit $ A^{-1} $ bezeichnet.


Beispiel

Links die Ausgangsmatrix, rechts die Einheitsmatrix, und durch Zeilenumformungen links die Einheitsmatrix erzeugen, wobei rechts alle Schritte genau gleich mitgerechnet werden. In der Praxis, auf Papier, schreibt man allerdings die Matrixklammern nicht, sondern trennt die beiden Zahlenreihen einfach durch einen senkrechten Strich.

$ \begin{pmatrix}1&3&-1\\-2&-1&4\\-1&0&2\end{pmatrix}\,\,\begin{pmatrix}1&0&0\\0&1&0\\0&0&1\end{pmatrix} $

Jetzt kann man doch einfach das Doppelte der ersten Zeile zur zweiten addieren, und dann auch noch die erste Zeile zur dritten:

$ \begin{pmatrix}1&3&-1\\0&5&2\\0&3&1\end{pmatrix}\,\,\begin{pmatrix}1&0&0\\2&10\\1&0&1\end{pmatrix} $

Um Brüche zu vermeiden, ist es vielleicht geschickt, zuerst die dritte Spalte zu bereinigen: addiere die dritte Zeile zur ersten, und auch das (-2)-fache der dritten Zeile zur zweiten:

$ \begin{pmatrix}1&6&0\\0&-1&0\\0&3&1\end{pmatrix}\,\,\begin{pmatrix}2&0&1\\0&1&-2\\1&0&1\end{pmatrix} $

Jetzt noch das 6-fache der zweiten Zeile zur ersten addiert, das 3-fache der zweiten Zeile zur dritten:

$ \begin{pmatrix}1&0&0\\0&-1&0\\0&0&1\end{pmatrix}\,\,\begin{pmatrix}2&6&-11\\0&1&-2\\1&3&-5\end{pmatrix} $

Jetzt nur noch die mittlere Zeile mit (-1) multiplizieren:

$ \begin{pmatrix}1&0&0\\0&1&0\\0&0&1\end{pmatrix}\,\,\begin{pmatrix}2&6&-11\\0&-1&2\\1&3&-5\end{pmatrix} $

Nun kann man rechts die invertierte Matrix ablesen.


siehe auch: [link]Wikipedia

Erstellt: Di 30.11.2004 von informix
Letzte Änderung: Sa 06.11.2010 um 14:29 von M.Rex
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]