matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteLagrange
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Lagrange
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

Lagrange

Satz von Lagrange

Sei G eine endliche Gruppe und $ U\le G $. Dann gilt:

                  $ |G|=|T|\cdot|U| $

mit T Links- oder Rechtstransversale von U in G. Insbesondere haben alle Transversalen von U in G gleiche Mächtigkeit.
Diese Anzahl heißt Index von U in G, schreibe |G:U|. Also gilt:

                  $ |G|=|G:U|\cdot|U| $.


Beweis

T Linkstransversale von U in G   $ \Rightarrow $   $ G=\bigcup_{t\in T}^{\cdot}tU $ und $ |G|=\sum_{t\in T}|tU| $.

Wegen |tU|=|U| folgt:

                  $ |G|=|T|\cdot|U| $,

denn $ |G|=\sum_{t\in T}|tU|=\sum_{t\in T}|U|=|T|\cdot|U| $.   $ \square $


Korollar (Kleiner Satz von Fermat)

Sei $ a\in \IZ $ nicht durch eine Primzahl p teilbar. Dann gilt: $ p|(a^{p-1}-1) $.

(Beweis: Die Gruppe der invertierbaren Elemente in $ (\IZ/p\IZ,\cdot) $ hat Ordnung p-1.)


Verallgemeinerung des Satzes

Sind U und V Untergruppen der endlichen Gruppe G mit $ U \subseteq V $, dann gilt

                  $ [G : U] = [G : V ] \cdot [V : U] $.


Beweis

Wende den Satz von Lagrange mehrfach an und kürze |U| heraus:

                  $ |G| = [G:U] \cdot |U| = [G:V] \cdot |V| = [G:V ] \cdot [V:U]\cdot|U| $.      $ \square $


Anwendung

Sei $ S_3:=\{id, d,d^2,\sigma_1, \sigma_2, \sigma_3\} $ die symmetrische Gruppe, wobei

$ id:=\pmat{1 & 2 & 3 \\ 1 & 2 & 3}=\pmat{1} $, $ d:=\pmat{1 & 2 & 3 \\ 2 & 3 & 1}=\pmat{1 & 2 & 3} $, $ d^2:=\pmat{1 & 2 & 3 \\ 3 & 1 & 2}=\pmat{1 & 3 & 1} $,

$ \sigma_1:=\pmat{1 & 2 & 3 \\ 1 & 3 & 2}=\pmat{2 & 3} $, $ \sigma_2:=\pmat{1 & 2 & 3 \\ 3 & 2 & 1}=\pmat{1 & 3} $, $ \sigma_3:=\pmat{1 & 2 & 3 \\ 2 & 1 & 3}=\pmat{1 & 2} $.

Es ist ord(id)=1, $ ord(d)=3=ord(d^2) $ und $ ord(\sigma_1)=ord(\sigma_2)=ord(\sigma_3)=2 $.

Wir bestimmen nun alle Untergruppen von $ S_3 $.

Wegen $ |S_3|=6 $ hat $ S_3 $ höchstens Untergruppen der Ordnung 1,2,3 und 6. Die trivialen Untergruppen $ \{id\} $ bzw. $ S_3 $ haben Ordnung 1 bzw. 6 und sind einzige Untergruppen dieser Ordnungen.
Elemente der Ordung 2 erzeugen folgende zweielementige Untergruppen, die die einzigen Untergruppen mit Ordung 2 sind:

$ U_1=\langle\sigma_1\rangle=\{id,\sigma_1\} $, $ U_2=\langle\sigma_2\rangle=\{id,\sigma_2\} $ und $ U_3=\langle\sigma_3\rangle=\{id,\sigma_3\} $

Wegen $ d^{-1}=d^2 $ ist $ V=\langle d\rangle=\langle d^2\rangle=\{id, d,d^2\} $. Zudem ist V einzige Untergruppe mit Ordnung 3. Denn jede andere Untergruppe mit drei Elementen enthält ein $ \sigma_1 $, $ \sigma_2 $ oder $ \sigma_3 $ und ist deshalb Untergruppe der Ordung 2. Nach Lagrange hat sie dann nicht Ordnung 3.



Literatur

isbn9783827430113 C. Karpfinger, K. Meyberg: Algebra, Springer Spektrum, 2013

Erstellt: Mi 25.02.2015 von Ladon
Letzte Änderung: Sa 28.03.2015 um 15:18 von Ladon
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]