matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteKreis
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Kreis
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

Kreis

Definition

Ein Kreis ist die Menge aller Punkte in einer Ebene, die von einem festen Punkt M (Mittelpunkt) die Entfernung r ("Radius") besitzen:

$ K = \{P | |PM| = r\} $  (Umfang) oder $ K = \{P | |PM| \le r\} $ (Kreisfläche)

Dies kann man auch mit Hilfe der Vektorrechnung beschreiben, wenn $ \vec{m} $ der Ortsvektor des Mittelpunkts M ist:

$ (\vec{x}-\vec{m})^2=r^2 $

in Koordinaten ausgedrückt:

$ (x_1-m_1)^2+(x_2-m_2)^2=r^2 $



Umfang des Kreises

$ U_{Kr} = 2 \pi r $

Flächeninhalte


Kreis

$ A_{Kr} = \pi r^2 \cdot{} $

Kreissegment

Durch eine Sekante abgetrennter Teil eines Kreises
$ A \, = \frac{r^2}2 \cdot \left(\alpha-\sin\alpha\right) $
Siehe auch Wikipedia: Kreissegment

Kreissektor

Durch zwei Radien  begrenzter Teil eines Kreises ("Kuchenstück")
$ A \, = \, \frac{\alpha}{360^\circ} \cdot r^2 \cdot \pi = \frac{1}{2} b \cdot r $
Siehe auch Wikipedia: Kreissektor

Berechnung von Kreistangenten


Aufgabe

Gegeben ist der Kreis K mit $ \left(x-x_M\right)^2 + \left(y-y_M\right)^2 = r^2 $, der von der Geraden x = c mit $ \left|c\right|<r $ in den Punkten $ P_1 $ und $ P_2 $ geschnitten wird. Man bestimme die Kreistangenten $ f_{1;2} $ für $ P_1 $ und $ P_2 $.

Lösung

Wir gehen also von der allgemeinen Kreisgleichung eines Kreises K mit Mittelpunkt $ \left(x_M\left|\ y_M\!\right.\right) $ aus: $ \left(x-x_M\right)^2 + \left(y-y_M\right)^2 = r^2 $ und formen diese nach y um, wodurch wir zwei Funktionen erhalten:

$ \Leftrightarrow \left(y-y_M\right)^2 = r^2-\left(x-x_M\right)^2\Rightarrow y-y_M = \pm\sqrt{r^2-\left(x-x_M\right)^2} $

$ \Leftrightarrow y=y_M\pm\sqrt{r^2-\left(x-x_M\right)^2}. $

Angenommen eine senkrechte Gerade x=c schneidet K in den Punkten

$ P_{1;2}:=\left(c\left|\ y_M\pm\sqrt{r^2-\left(c-x_M\right)^2}\right.\right). $

Bilden der Ableitungen

$ y'\left(c\right) = \pm\frac{x_M-c}{\sqrt{r^2-\left(c-x_M\right)^2}} $

und Einsetzen von $ P_{1;2} $ zusammen mit diesen Ableitungen in die allgemeine Geradengleichung f(x):=ax+b ergibt:

$ y_M\pm\sqrt{r^2-\left(c-x_M\right)^2}=\pm\frac{x_Mc-c^2}{\sqrt{r^2-\left(c-x_M\right)^2}}+b $

$ \Leftrightarrow\pm\sqrt{r^2-\left(c-x_M\right)^2}y_M+r^2-\left(c-x_M\right)^2=x_Mc-c^2\pm b\sqrt{r^2-\left(c-x_M\right)^2} $

$ \Leftrightarrow\pm\sqrt{r^2-\left(c-x_M\right)^2}y_M+r^2 + x_Mc - x_M^2=\pm b\sqrt{r^2-\left(c-x_M\right)^2} $

$ \Leftrightarrow b = y_M\pm\frac{r^2+x_Mc-x_M^2}{\sqrt{r^2-\left(c-x_M\right)^2}}. $

Allgemein erhalten wir also für die Kreistangenten in $ P_{1;2} $:

$ f_{1;2}(x)= \pm\frac{x_Mx-cx}{\sqrt{r^2-\left(c-x_M\right)^2}}+y_M\pm\frac{r^2+x_Mc-x_M^2}{\sqrt{r^2-\left(c-x_M\right)^2}}. $

Erstellt: Di 03.06.2008 von ardik
Letzte Änderung: Fr 10.09.2010 um 16:01 von Karl_Pech
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]