matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteWachstumsfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Wachstumsfunktion
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

Wachstumsfunktion

(Weitergeleitet von Halbwertszeit)

Das Wachstums- oder Zerfallsgesetz lautet allgemein:

$ N(t)=N_0\cdot{}q^t $

wobei $ N_0 $ der Bestand zu Beginn der Betrachtung (t=0) ist und q(>1) der Wachstums- bzw. (0<q<1) der Zerfallsfaktor ist.

Für die Halbwertszeit T gilt nun:

$ \bruch{1}{2}\cdot{}N_0=N_0\cdot{}q^T $ (nach T Jahren haben wir noch einen Bestand von $ N(T)=\bruch{1}{2}\cdot{}N_0 $)


Beispiel

Die Zeitspanne, in der die Hälfte eines radioaktiven Stoffes zerfällt, heißt Halbwertszeit. Das Kohlenstoff-Isotop $ C^{14} $ hat eine Halbwertszeit von 5730 Jahren.
Stelle das Zerfallsgesetz auf.
Wieviel Prozent einer vorhandenen Stoffmenge zerfällt jeweils in 100 Jahren?

Hier setze ich nun T=5730 ein und erhalte (nach Kürzen von $ N_0 $):

$ \bruch{1}{2}=q^{5730} $ (auf beiden Seiten $ (\ldots)^\bruch{1}{5730} $)
$ \gdw\ q=\left(\bruch{1}{2}\right)^{\bruch{1}{5730}} $

Das ist nun ein Wert, den ihr mit dem Taschenrechner ausrechnen könnt.

Das Zerfallsgesetz lautet jetzt:

$ N(t)=N_0\cdot{}\left(\blue{\left(\bruch{1}{2}\right)^{\bruch{1}{5730}}}\right)^t $ (das sieht kompliziert aus, ich habe aber keine Lust, den blauen Ausdruck mit dem TR auszurechnen ;-))

Der Bestand nach 100 Jahren berechnet sich jedenfalls durch Einsetzen des Zeitpunktes t=100 in das Zerfallsgesetz:

$ N(100)=N_0\cdot{}\left(\left(\bruch{1}{2}\right)^{\bruch{1}{5730}}\right)^{100} $

Hier muß ich wohl doch mal den TR bemühen und erhalte:

$ N(100)=N_0\cdot{}0{,}988 $

Diese bedeutet aber gerade:

Nach 100 Jahren beträgt der Bestand das 0,988-fache des Anfangsbestandes, in Prozenten: Nach 100 Jahren ist immer noch 98,8% des Anfangsbestandes vorhanden, nach 100 Jahren zerfällt also 1,2%.

Nun war aber nicht nur danach gefragt, wieviel Prozent im 100. Jahr zerfallen ist, sondern wie viel Prozent innerhalb beliebiger 100 Jahre --z.B. zwischen dem 2000. und 2100. Jahr-- zerfällt; bei einem exponentiellen Zerfall zerfällt aber über immer in derselben Zeitspanne derselbe prozentuale Anteil der Menge, d.h. für diese Aufgabe:
Während 100 Jahren zerfällt 1,2% des Isotops.

Erstellt: Mo 10.01.2005 von informix
Letzte Änderung: Mo 10.01.2005 um 18:29 von informix
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]