matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteGruppenhomomorphismus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Gruppenhomomorphismus
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

Gruppenhomomorphismus

Definition Begriff


Universität

Die Definition bettet sich in die allgemeine Definition eines Homomorphismus einer algebraischen Struktur ein:

Es seien $ (G, \circ) $, $ (H, \star) $ Gruppen. Eine Abbildung $ \varphi:G \to H $ heißt ein (Gruppen-)Homomorphismus, wenn für alle $ a,\, b \in G $ gilt:

$ \varphi(a \circ b) = \varphi(a) \star \varphi(b) $.

Die Homomorphismen zwischen zwei Gruppen sind also genau die Abbildungen, welche die Gruppenstruktur "respektieren".


Beispiele

a) Die Exponentialabbildung auf $ \IR $, $ x \mapsto e^x $, ist wegen $ e^{x+y} = e^xe^y $ ein Homomorphismus von $ (\IR,+) $ in $ (\IR \setminus \{0\}, \cdot) $.

b) Seien $ G,\, H $ Gruppen und $ e $ das neutrale Element von $ H $. Die Abbildung $ v:G \to H $, definiert durch $ v(g)=e $ für alle $ e \in G $, ist ein Homomorphismus.

c) Es sei $ (\IZ_n,+) $ die additive Gruppe der Restklassen modulo $ n $. Dann ist $ \pi:\IZ \to \IZ_n $, definiert durch $ \pi(m):=\bar{m} $, $ m \in \IZ $, auf Grund der Definition der Addition in $ \IZ_n $ ein Homomorphismus.


Homomorphismen mit weiteren Eigenschaften erhalten besondere Namen:

Es seien $ G,\, H $ Gruppen und $ \varphi:G \to H $ ein Homomorphismus.

a) $ \varphi $ heißt ein Monomorphismus (bzw. Epimorphismus), wenn $ \varphi $ injektiv (bzw. surjektiv) ist.

b) $ \varphi $ heißt ein Isomorphimus, wenn $ \varphi $ bijektiv ist.

c) Ein Homomorphismus von $ G $ in sich heißt ein Endomorphismus und ein Isomorphismus von $ G $ auf sich heißt Automorphismus.

d) $ G $ und $ H $ heißen isomorph, in Zeichen $ G \cong H $, wenn es einen Isomorphismus von $ G $ auf $ H $ gibt.

Man weißt leicht nach, dass für einen Gruppemhomomorphismus $ \varphi : G \to H $ gilt:

$ \varphi(a^n) = [\varphi(a)]^n $  für alle $ a \in G $, $ n \in \IZ $.

Insbesondere gilt:

$ \varphi(a^{-1}) = [\varphi(a)]^{-1} $  für alle $ a \in G $

und $ \varphi(e) $ ist das neutrale Element von $ H $, wenn $ e $ das neutrale Element von $ G $ ist.

Man definiert weiterhin:

$ Bild(\varphi):= \{\varphi(x)\, \vert \, x \in G\} $

und

$ Kern(\varphi):=\{x \in G\, \vert \, \varphi(x)=e'\} $,

wenn $ e':=\varphi(e) $ das neutrale Element von $ H $ ist.

Während $ Bild(\varphi) $ als "Maß für die Surjektivität" von $ \varphi $ angesehen werden kann, "misst" $ Kern(\varphi) $ die Injektivität. Insbesondere gilt:

Ein Gruppenhomomorphismus $ \varphi :G \to H $ ist genau dann injektiv, wenn $ Kern(\varphi) $ nur aus dem neutralen Element von $ G $ besteht.


Siehe auch: Automorphismengruppe


Quelle: isbn3446130799

Erstellt: Sa 20.08.2005 von Stefan
Letzte Änderung: Sa 20.08.2005 um 08:59 von Stefan
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]