matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körperzyklische Gruppe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - zyklische Gruppe
zyklische Gruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zyklische Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:32 Mi 19.11.2008
Autor: niki

Aufgabe
Beweisen Sie: Jede endliche Gruppe, deren Ordnung eine Primzahl ist, ist eine zyklische Gruppe.

Bitte helfen Sie mir, einen Beweis zu schreiben.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
zyklische Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:40 Mi 19.11.2008
Autor: reverend

Hattet Ihr schon den Begriff der "Ordnung" von Elementen? Dann ist der Beweis einfach. Die Gruppe habe [mm] \a{}n [/mm] Elemente. Nimm an, es gäbe ein Element [mm] \a{}a [/mm] mit einer Ordnung [mm] \a{}1
Ohne Ordnungen fällt es etwas schwerer. Dann wäre zu zeigen, dass für die Mächtigkeit [mm] \a{}m [/mm] einer Untergruppe der ganzen Gruppe mit der Mächtigkeit [mm] \a{}n [/mm] gilt: [mm] \a{}m [/mm] | [mm] \a{}n [/mm]



Bezug
                
Bezug
zyklische Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:35 Mi 19.11.2008
Autor: niki

Trotz Ihrer Antwort kann ich nicht weiter gehen.
Eine zyklische Gruppe bildet man als [mm] a^{m}, [/mm] wenn m Primzahl ist, kann man nur 2 Untergruppen bilden, mit m=1 und m=p.

Bezug
                        
Bezug
zyklische Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 10:07 Do 20.11.2008
Autor: angela.h.b.

Hallo,

versuchen wir's mal so:

nimm an, Du hast eine Gruppe mit |G|=p, p Primzahl.

Dann hat die Gruppe mindestens zwei Elemente.

Es gibt also ein vom neutralen Element e verschiedenes Element a,  [mm] a\not=e. [/mm]

Ich vermute, Du weißt, daß für jedes Element [mm] g\in [/mm] G gilt, daß [mm] g^p=e [/mm] ist, und daß die Ordnung eines jeden Elementes ein Teiler der Gruppenordnung ist.

Wenn dies der Fall ist, so nimm an, daß das Element a die Ordnung n<p hat. Was folgt hieraus? Was bedeutet das für die Gruppe?

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]