matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheoriezyklisch...
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Zahlentheorie" - zyklisch...
zyklisch... < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zyklisch...: Aufgabe..
Status: (Frage) beantwortet Status 
Datum: 13:27 Mo 29.06.2009
Autor: antonicwalker

Aufgabe
Zeigen Sie:
Sind G,H endliche zyklische Gruppen, so ist das direkte Produkt
G × H genau dann zyklisch, wenn ggT(|G|, |H|) = 1 ist.

Hallo zusammen,

ich habe bei der Vorlesung gelernt, dass
Sei G endliche Gruppe:
G zyklisch [mm] \dgw [/mm] G hat für jeden Teiler d von lGl genau '(d) Elemente der Ordnung d .
Aber kennt jemand, wie ich mit diesem Satz Aufgabe weiterlösen kann?!
Vielen Dank

VG

antonicwalker

        
Bezug
zyklisch...: Antwort
Status: (Antwort) fertig Status 
Datum: 10:27 Mi 01.07.2009
Autor: angela.h.b.


> Zeigen Sie:
> Sind G,H endliche zyklische Gruppen, so ist das direkte
> Produkt
>  G × H genau dann zyklisch, wenn ggT(|G|, |H|) = 1 ist.
>  Hallo zusammen,
>  
> ich habe bei der Vorlesung gelernt, dass
> Sei G endliche Gruppe:
>  G zyklisch [mm]\dgw[/mm] G hat für jeden Teiler d von lGl genau
> '(d) Elemente der Ordnung d .

Hallo,

was '(d) darstellen soll, wäre für Unbedarfte noch zu erklären...


Wieviele Elmente hat denn G × H ?

Als erzeugendes Element bräuchtest Du eins von entsprechender Ordnung.

Welche Ordnung haben die Elemente aus G maximal? Welche die aus H?

Welche Ordnung konnen die Elemente aus GxH maximal haben?


Vielleicht spielst Du mal mit einer zyklischen Gruppe der Ornung 4 und einer der Ordnung 6, um Dich auf Ideen zu bringen.

Gruß v. Angela




>  Aber kennt jemand, wie ich mit diesem Satz Aufgabe
> weiterlösen kann?!
>  Vielen Dank
>  
> VG
>  
> antonicwalker


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]