matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysiszweite partielle Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - zweite partielle Ableitung
zweite partielle Ableitung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zweite partielle Ableitung: Kopfschmerzen
Status: (Frage) beantwortet Status 
Datum: 15:23 Di 24.05.2005
Autor: baddi

Hi meine Aufgabe macht mir Kopfschmerzen.
Verzweifelt schaue ich ins Blatt und hoffe etwas falsch gelesen zu haben, aber nix da.

g(r,p):= f(r*cos*p,r*sin*p)

und sucht die zweite partill. Ableitung von g nach r.

Für die erste habe ich herrausbekommen:
[mm] \bruch{ \partial g }{ \partial r } [/mm] g( r , p ) =
[mm] \bruch{ \partial f }{ \partial x } [/mm] f(x, y) * cos p

Das hab ich mit der Kettenregel gemacht (hat mir jemand gesagt), ging eigentlich ganz einfach.

[mm] \bruch{ \partial^2 g }{ (\partial r)^2 } [/mm] g( r , p ) =
[mm] \bruch{ \partial g }{ \partial r } [/mm]  ( [mm] \bruch{ \partial g }{ \partial r } [/mm] g( r , p )  ) =
[mm] \bruch{ \partial g }{ \partial r } [/mm]  ( [mm] \bruch{ \partial f }{ \partial x } [/mm] f(x, y) * cos p )

Ok, aber wie kann ich das ableiten ?
Ich hab da ja gar kein r mehr drin... oder doch?
Und wie ... äh... also ...  ich bin total verwirrt.

Das ganz Übungsblatt besteht aus solchen Aufgaben, ich verstehe Sie alle nicht.

Danke & Gruß von dem der Kopfschmerzen hat.

        
Bezug
zweite partielle Ableitung: Regel anwenden
Status: (Antwort) fertig Status 
Datum: 16:11 Di 24.05.2005
Autor: MathePower

Hallo,

> g(r,p):= f(r*cos*p,r*sin*p)
>  
> und sucht die zweite partill. Ableitung von g nach r.
>  
> Für die erste habe ich herrausbekommen:
>  [mm]\bruch{ \partial g }{ \partial r }[/mm] g( r , p ) =
>  [mm]\bruch{ \partial f }{ \partial x }[/mm] f(x, y) * cos p

das stimmt so aber nicht:

Für die partiellen Ableitungen von verketteten Funktionen gilt ja, wie Du schon erwähnt hast die Kettenregel:

[mm]\begin{gathered} \frac{{\delta g}} {{\delta r}}\; = \;\frac{{\delta f}} {{\delta x}}\;\frac{{\delta x}} {{\delta r}}\; + \;\frac{{\delta f}} {{\delta y}}\;\frac{{\delta y}} {{\delta r}} \hfill \\ \frac{{\delta g}} {{\delta p}}\; = \;\frac{{\delta f}} {{\delta x}}\;\frac{{\delta x}} {{\delta p}}\; + \;\frac{{\delta f}} {{\delta y}}\;\frac{{\delta y}} {{\delta p}} \hfill \\ \end{gathered} [/mm]

> [mm]\bruch{ \partial^2 g }{ (\partial r)^2 }[/mm] g( r , p ) =
>  [mm]\bruch{ \partial g }{ \partial r }[/mm]  ( [mm]\bruch{ \partial g }{ \partial r }[/mm]
> g( r , p )  ) =
>  [mm]\bruch{ \partial g }{ \partial r }[/mm]  ( [mm]\bruch{ \partial f }{ \partial x }[/mm]
> f(x, y) * cos p )


Da mußt Du die Regel von oben einfach nochmal anwenden:

[mm] \frac{{\partial ^2 g}} {{\partial r\partial p}}\; = \;\frac{{\delta \left( {\frac{{\delta f}} {{\delta x}}\;\frac{{\delta x}} {{\delta r}}\; + \;\frac{{\delta f}} {{\delta y}}\;\frac{{\delta y}} {{\delta r}}} \right)}} {{\delta x}}\;\frac{{\delta x}} {{\delta p}}\; + \;\frac{{\delta \left( {\frac{{\delta f}} {{\delta x}}\;\frac{{\delta x}} {{\delta r}}\; + \;\frac{{\delta f}} {{\delta y}}\;\frac{{\delta y}} {{\delta r}}} \right)}} {{\delta y}}\;\frac{{\delta y}} {{\delta p}}[/mm]

Das ergibt folgendes:

[mm]\begin{gathered} \frac{{\partial ^2 g}} {{\partial r\partial p}} = \;\frac{{\partial ^2 f}} {{\partial x^2 }}\;\frac{{\delta x}} {{\delta r}}\;\frac{{\delta x}} {{\delta p}}\; + \;\frac{{\partial ^2 f}} {{\partial y\partial x}}\;\frac{{\delta y}} {{\delta r}}\;\frac{{\delta x}} {{\delta p}}\; + \;\frac{{\partial ^2 f}} {{\partial x\partial y}}\;\frac{{\delta x}} {{\delta r}}\;\frac{{\delta y}} {{\delta p}}\; + \;\frac{{\partial ^2 f}} {{\partial y^2 }}\;\frac{{\delta y}} {{\delta r}}\;\frac{{\delta y}} {{\delta p}} \hfill \\ = \;\frac{{\partial ^2 f}} {{\partial x^2 }}\;\frac{{\delta x}} {{\delta r}}\;\frac{{\delta x}} {{\delta p}}\; + \;\frac{{\partial ^2 f}} {{\partial x\partial y}}\;\left( {\frac{{\delta y}} {{\delta r}}\;\frac{{\delta x}} {{\delta p}}\; + \;\frac{{\delta x}} {{\delta r}}\;\frac{{\delta y}} {{\delta p}}} \right)\; + \;\frac{{\partial ^2 f}} {{\partial y^2 }}\;\frac{{\delta y}} {{\delta r}}\;\frac{{\delta y}} {{\delta p}} \hfill \\ \hfill \\ \end{gathered} [/mm]

Für [mm]\frac{{\partial ^{2} g}} {{\partial r^{2} }}[/mm] ergibt sich dann:

[mm]\frac{{\partial ^2 g}} {{\partial r^2 }}\; = \;\frac{{\partial ^2 f}} {{\partial x^2 }}\;\left( {\frac{{\delta x}} {{\delta r}}} \right)^2 \; + \;2\;\frac{{\partial ^2 f}} {{\partial x\partial y}}\;\frac{{\delta x}} {{\delta r}}\;\frac{{\delta y}} {{\delta r}}\; + \;\frac{{\partial ^2 f}} {{\partial y^2 }}\;\left( {\frac{{\delta y}} {{\delta r}}} \right)^2 [/mm]

Ich hoffe, Du kriegst das trotz Deiner Kopfschmerzen hin.

Gruß
MathePower

Bezug
                
Bezug
zweite partielle Ableitung: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 16:49 Di 24.05.2005
Autor: baddi

Hallo MathePower,

> Für die partiellen Ableitungen von verketteten Funktionen
> gilt ja, wie Du schon erwähnt hast die Kettenregel:
>  
> [mm]\begin{gathered} \frac{{\delta g}} {{\delta r}}\; = \;\frac{{\delta f}} {{\delta x}}\;\frac{{\delta x}} {{\delta r}}\; + \;\frac{{\delta f}} {{\delta y}}\;\frac{{\delta y}} {{\delta r}} \hfill \\ \frac{{\delta g}} {{\delta p}}\; = \;\frac{{\delta f}} {{\delta x}}\;\frac{{\delta x}} {{\delta p}}\; + \;\frac{{\delta f}} {{\delta y}}\;\frac{{\delta y}} {{\delta p}} \hfill \\ \end{gathered}[/mm]

> Da mußt Du die Regel von oben einfach nochmal anwenden:
>  
> [mm] \frac{{\partial ^2 g}} {{\partial r\partial p}}\; = \;\frac{{\delta \left( {\frac{{\delta f}} {{\delta x}}\;\frac{{\delta x}} {{\delta r}}\; + \;\frac{{\delta f}} {{\delta y}}\;\frac{{\delta y}} {{\delta r}}} \right)}} {{\delta x}}\;\frac{{\delta x}} {{\delta p}}\; + \;\frac{{\delta \left( {\frac{{\delta f}} {{\delta x}}\;\frac{{\delta x}} {{\delta r}}\; + \;\frac{{\delta f}} {{\delta y}}\;\frac{{\delta y}} {{\delta r}}} \right)}} {{\delta y}}\;\frac{{\delta y}} {{\delta p}}[/mm]

Stimmt das Folgendes ?
[mm] \frac{{\partial ^2 g}} {{\partial r\partial r}}\; = \frac{{\partial ^2 g}} {{\partial^2 r}}\; = \;\frac{{\delta \left( {\frac{{\delta f}} {{\delta x}}\;\frac{{\delta x}} {{\delta r}}\; + \;\frac{{\delta f}} {{\delta y}}\;\frac{{\delta y}} {{\delta r}}} \right)}} {{\delta x}}\;\frac{{\delta x}} {{\delta r}}\; + \;\frac{{\delta \left( {\frac{{\delta f}} {{\delta x}}\;\frac{{\delta x}} {{\delta r}}\; + \;\frac{{\delta f}} {{\delta y}}\;\frac{{\delta y}} {{\delta r}}} \right)}} {{\delta y}}\;\frac{{\delta y}} {{\delta r}}[/mm]


> Ich hoffe, Du kriegst das trotz Deiner Kopfschmerzen hin.

Es ist schon ein bisschen besser, hab Kaffee getrunken... naja... psychologisch... gibt mir Gefühl neuer Kraft ;)
Danke :-)

Gruß
Sebasitan

Bezug
                        
Bezug
zweite partielle Ableitung: Stimmt
Status: (Antwort) fertig Status 
Datum: 18:27 Di 24.05.2005
Autor: MathePower

Hallo baddi,

> Stimmt das Folgendes ?
>  [mm] \frac{{\partial ^2 g}} {{\partial r\partial r}}\; = \frac{{\partial ^2 g}} {{\partial^2 r}}\; = \;\frac{{\delta \left( {\frac{{\delta f}} {{\delta x}}\;\frac{{\delta x}} {{\delta r}}\; + \;\frac{{\delta f}} {{\delta y}}\;\frac{{\delta y}} {{\delta r}}} \right)}} {{\delta x}}\;\frac{{\delta x}} {{\delta r}}\; + \;\frac{{\delta \left( {\frac{{\delta f}} {{\delta x}}\;\frac{{\delta x}} {{\delta r}}\; + \;\frac{{\delta f}} {{\delta y}}\;\frac{{\delta y}} {{\delta r}}} \right)}} {{\delta y}}\;\frac{{\delta y}} {{\delta r}}[/mm]

das ist richtig.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]