matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitzwei st. und diffb. Funktionen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Stetigkeit" - zwei st. und diffb. Funktionen
zwei st. und diffb. Funktionen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zwei st. und diffb. Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:06 Mo 21.07.2008
Autor: Karl_Pech

Hallo Zusammen,


Wäre Klasse, wenn mir jemand einen Ansatz für die folgende Aufgabe geben könnte.


Aufgabe
Es seien [mm]a,b\in\mathbb{R},a


Das, was am Anfang gegeben ist, läßt ja bereits vermuten, daß man hier entweder den Satz von Rolle oder aber den allgemeinen Mittelwertsatz anzuwenden hat. Nur kommt mir irgendwie keine Idee, wie ich ihn anwenden soll.



Grüße
Karl




        
Bezug
zwei st. und diffb. Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:35 Mo 21.07.2008
Autor: pelzig


> Es seien [mm]a,b\in\mathbb{R},a
> [mm]f,g:\left[a,b\right]\to\mathbb{R}[/mm] seien stetige, auf
> [mm]\left]a,b\right[[/mm] differenzierbare Funktionen mit [mm]f(a)\ge g(a)[/mm]
> und [mm]f'\ge g'[/mm]. Zeigen Sie, daß dann [mm]f\ge g[/mm] auf ganz
> [mm]\left[a,b\right][/mm] gilt.

Betrachte [mm]h(x):=(f-g)(x)[/mm]. Offensichtlich ist [mm]h[/mm] ebenfalls stetig auf [mm][a,b][/mm] und diffbar auf [mm](a,b)[/mm], ferner [mm] $h'(x)\ge0$ [/mm] für alle [mm] $x\in(a,b)$ [/mm] und [mm] $h(a)\ge0$. [/mm] Nach dem MWS ist also für [mm] $x\in[a,b]$ [/mm]
[mm] $$h(x)-h(a)=h'(\xi)(x-a)\ge 0\Rightarrow h(x)\ge h(a)\ge 0\Rightarrow f(x)-g(x)\ge 0\gdw f(x)\ge [/mm] g(x)$$Also die Behauptung, da [mm] $x\in[a,b]$ [/mm] beliebig war.

Bezug
                
Bezug
zwei st. und diffb. Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:24 Di 22.07.2008
Autor: Karl_Pech

Hallo pelzig!


Vielen Dank! Hut ab! [hut]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]