matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Induktionzur vollständigen Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Induktion" - zur vollständigen Induktion
zur vollständigen Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zur vollständigen Induktion: Allgemein
Status: (Frage) beantwortet Status 
Datum: 18:26 Mi 07.11.2012
Autor: Tarraft

Aufgabe
Sei [mm] P_{n} [/mm] die Menge aller Teilmengen von {1,...,n} einschlielich der leeren Menge. Zeigen Sie durch Induktion die Anzahl der Elemente von [mm] P_{n} [/mm] ist [mm] 2^n. [/mm]

Guten Abend!
Zur dieser Aufgabe haben ich mehr oder weniger eine Frage. Also ich weiß, wenn ich ein paar Werte für n einsetze, das die Aussage wahr ist. Aber ich kann daraus keinen Beweis machen. Das ist nicht meine erste Aufgabe zur vollständigen Induktion, aber ich schaffe es nicht von allgemeingültigen Aussagen wie dieser oder irgendwelchen Funktion oder Mengen einen allgemeingültigen Beweis zu erstellen. Ich habe mich auf anderen Internetseiten über den Aufbau der vollständige Induktion informiert und ich kann das auch nachvollziehen. Aber selbst komme ich nicht darauf.
Ich hoffe das mir irgendjemand anhand der Beispielaufgabe weiterhelfen kann.

Mit Grüßen Tarraft

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
zur vollständigen Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:31 Mi 07.11.2012
Autor: HJKweseleit

Der Schluss von n auf n+1 geht so:

Stell dir vor, du hast zunächst n Elemente. Dazu hast du die Potenzmenge mit insgesamt [mm] 2^n [/mm] Teilmengen gebildet.
Jetzt kommt ein Element hinzu, und du suchst wieder alle mgl. Teilmengen.
Was passiert mit den bisherigen Teilmengen?
Wie sehen alle Teilmengen aus, die es vorher noch nicht gab und die nun hinzu gekommen sind?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]