matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete Optimierungzulässige / optimale Lösung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Diskrete Optimierung" - zulässige / optimale Lösung
zulässige / optimale Lösung < Optimierung < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Optimierung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zulässige / optimale Lösung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:22 Mi 25.04.2012
Autor: m51va

Aufgabe
Gegeben sei das LOP
[mm] \begin{array}{rcrcrcrcr} 2x_1 & + & x_2 & - & x_3 & + & 4x_4 & = & 1 \\ 4x_1 & + & 2x_2 & + & x_3 & - & x_4 & = & 5 \\ \multicolumn{7}{r}{\ve{x}} & \geq & 0 \\ \multicolumn{7}{r}{-x_1+t\cdot x_2 + x_4} & \rightarrow & \max \end{array} [/mm]
(a) Ist durch [mm] (0,2,1,0)^T [/mm] eine zulässige Basislösung gegeben? Begründen Sie Ihre Antwort
(b) Für welche Werte t ist durch [mm] (0,2,1,0)^T [/mm] eine optimale Lösung dieses LOP gegeben?

(a) ist kein Problem
(b) Ich wollte das ganze mit der Simplexmethode lösen. Es gibt da diesen Satz, dass der vektor x eine optimale Lösung des LOP's ist, wenn in der Simplextabelle
[mm] \begin{array}{c|c|c} & & NB \\ \hline & w & -g^T \\ \hline B & s & R \end{array} [/mm]
die [mm] g_l [/mm] alle positiv sind. Als Basisvariablen sind hier [mm] x_2 [/mm] und [mm] x_3 [/mm] zu wählen. [mm] (x_1 [/mm] und [mm] x_4 [/mm] sind null und daher die nichtbasisvariablen)
In der Zielfunktion habe ich zunächst [mm] x_2 [/mm] mit hilfe der ersten beiden Gleichungen aus dem LOP eliminiert (erste Gleichung nach [mm] x_2, [/mm] zweite gleichung nach [mm] x_3 [/mm] umstellen, [mm] x_3 [/mm] dann in Gleichung für [mm] x_2 [/mm] einsetzen)
ich denke ich habe mich dabei nicht verrechnet. die neue Zielfunktion lautet dann [mm] -x_1(1+2t)+x_4(1-t)+2t \rightarrow \max [/mm]

Damit erhalte ich die Simplextabelle
[mm] \begin{array}{r|c|cc} & & x_1 & x_4 \\ \hline & 2t & 1+2t & t-1 \\ \hline x_2 & 1 & 2 & 4 \\ x_3 & 5 & 4 & -1 \end{array} [/mm]

und nun geht das dilemma los. Wenn ich jetzt so t wähle, dass die [mm] g_l [/mm] alle positiv sind (also t [mm] \geq [/mm] 1), dann ist nach unserem Satz der Vektor [mm] (0,1,5,0)^T [/mm] eine optimale lösung und nicht [mm] (0,2,1,0)^T. [/mm]

Also ist mein Ansatz falsch oder kann man das auch noch anders zeigen???
ich bedanke mich schon mal

gruß m51va

        
Bezug
zulässige / optimale Lösung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:20 Do 26.04.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Optimierung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]