matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastik"zufallszahlen" rekursiv Def.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - "zufallszahlen" rekursiv Def.
"zufallszahlen" rekursiv Def. < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

"zufallszahlen" rekursiv Def.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:20 Mo 25.10.2010
Autor: m0ppel

Aufgabe
1. Wir untersuchen einen Erzeuger von Pseudozufallszahlen. Gegeben sind also [mm]a_{0}, a_{1}[/mm] und [mm]m, n_{0}[/mm], und für [mm]k \in \IN_{0}[/mm] wird [mm] n_{k+1} [/mm] rekursiv durch
[mm]n_{k+1} := (n_{k}a_{0} + a_{1}) mod[/mm] [mm]m[/mm]

definiert.
Man beweise, dass die Folge [mm] (n_{k}) [/mm] schließlich periodisch wird: Es gibt [mm]k_{0},l \in \IN[/mm], so dass [mm]n_{k+l} = n_{k}[/mm] für alle [mm]k \ge k_{0}[/mm].
Finden Sie auch eine obere Schranke für [mm]l[/mm].

Ich weiß, dass die rekursiv definierte Folge beschränkt ist auf Grund der Eigenschaften von Modolus. Das heißt [mm] n_{k+1} [/mm] kann nicht größer werden als (m-1)
Ich habe gelesen, dass die Folge daher periodisch ist, aber wie kann ich das nachweisen?
Mein Ansatz wäre, zu zeigen, dass ein l [mm] \in \IN [/mm] existiert, welches folgende Eigenschaften hat:
[mm]n_{k}=n_{k+l} \gdw (n_{k-1}a_{0} + a_{1}) mod m = (n_{k+l}a_{0} + a_{1}) mod m[/mm]
aber wie kann ich hier weiter machen? Welche Rechenregeln muss man bei Modulo beachten?

Danke schon mal und Liebe Grüße!

        
Bezug
"zufallszahlen" rekursiv Def.: Antwort
Status: (Antwort) fertig Status 
Datum: 08:25 Mo 25.10.2010
Autor: rainerS

Hallo!

> 1. Wir untersuchen einen Erzeuger von Pseudozufallszahlen.
> Gegeben sind also [mm]a_{0}, a_{1}[/mm] und [mm]m, n_{0}[/mm], und für [mm]k \in \IN_{0}[/mm]
> wird [mm]n_{k+1}[/mm] rekursiv durch
>  [mm]n_{k+1} := (n_{k}a_{0} + a_{1}) mod[/mm] [mm]m[/mm]
>  definiert.
> Man beweise, dass die Folge [mm](n_{k})[/mm] schließlich periodisch
> wird: Es gibt [mm]k_{0},l \in \IN[/mm], so dass [mm]n_{k+l} = n_{k}[/mm] für
> alle [mm]k \ge k_{0}[/mm].
>  Finden Sie auch eine obere Schranke für
> [mm]l[/mm].
>  Ich weiß, dass die rekursiv definierte Folge beschränkt
> ist auf Grund der Eigenschaften von Modolus. Das heißt
> [mm]n_{k+1}[/mm] kann nicht größer werden als (m-1)
>  Ich habe gelesen, dass die Folge daher periodisch ist,
> aber wie kann ich das nachweisen?

Tipp: Da alle Zufallszahlen kleiner als m sind, wie viele verschiedene Zufallszahlen kann es höchstens geben? Was passiert, wenn zum ersten Mal eine Zahl doppelt in der Folge auftaucht?

Viele Grüße
   Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]