matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungzufallsgrössen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitsrechnung" - zufallsgrössen
zufallsgrössen < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zufallsgrössen: geburten
Status: (Frage) beantwortet Status 
Datum: 20:00 Mi 29.10.2008
Autor: Julia1988

Aufgabe
die wahrscheinlichkeit für die geburt eines mädchens beträgt ungefähr 1/2. eine familie mit 3 kindern wird zufällig ausgesucht. betrachte die zufallsgröße.. X: anzahl derr mädchen.
mit welcher wahrscheinlichkeit tritt das ergebnis x= 0, X=1,X=2,X=3 auf?

ich weiß nicht wie man soetwas berchnet. unser leherer gibt uns immer ganz viele aufgaben und wir sollen uns das dann mit unserm buch selbst beibringen. leider bin ich in mathe schlecht und bei mir klappt das so nicht )-: npr,ncr,pfadregel oder tabelle hab icch mal gemacht. aber das soll ja jetzt eigentlich auch was neues sein.

        
Bezug
zufallsgrössen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:57 Mi 29.10.2008
Autor: informix

Hallo Julia1988,

> die wahrscheinlichkeit für die geburt eines mädchens
> beträgt ungefähr 1/2. eine familie mit 3 kindern wird
> zufällig ausgesucht. betrachte die zufallsgröße.. X: anzahl
> derr mädchen.
>  mit welcher wahrscheinlichkeit tritt das ergebnis x= 0,
> X=1,X=2,X=3 auf?
>  ich weiß nicht wie man soetwas berchnet. unser leherer
> gibt uns immer ganz viele aufgaben und wir sollen uns das
> dann mit unserm buch selbst beibringen. leider bin ich in
> mathe schlecht und bei mir klappt das so nicht )-:
> npr,ncr,pfadregel oder tabelle hab icch mal gemacht. aber
> das soll ja jetzt eigentlich auch was neues sein.

eine MBZufallsgröße erhält man, wenn man einem Ereignis eine Zahl zuordnet:
MJJ [mm] \to [/mm] 1 , JMJ [mm] \to [/mm] 1 und JJM [mm] \to [/mm] 1
MMJ [mm] \to [/mm] 2 , ...

Zeichne als erstes einen dreistufigen Baum,
links M rechts J
an jedem Pfad steht [mm] \bruch{1}{2}, [/mm] weil die Wkt. für ein Mädchen oder einen Jungen [mm] p=\bruch{1}{2} [/mm] sein soll.

Nun gehst du längs einem Pfad entlang und multiplizierst die Brüche:

Zuordnung:  X: Anzahl M
[mm] P(X=1)=P(MJJ)=\underbrace{\vektor{3\\1}}_{Binomialkoeffizient}*\underbrace{\bruch{1}{2}}_{=M}*\underbrace{(\bruch{1}{2})^2}_{=2J} [/mm]

MJJ bedeutet: 1 Mädchen und 2 Jungen, aber die Reihenfolge kann unterschiedlich sein: MJJ JMJ JJM , also drei Möglichkeiten, ausgedrückt durch den MBBinomialkoeffizienten

Jetzt klar(er)?

Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]