matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungzu große Zahl?
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitsrechnung" - zu große Zahl?
zu große Zahl? < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zu große Zahl?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 05:39 Mo 05.02.2007
Autor: Woodstock_x

Hallo

Ich komme bei dieser Aufgabe nicht weiter:
Man eine Stichprobe von 1000. Eine fehlerquote von 10%. Wie groß ist die Wahrscheinlichkeit, das unter der Stichprobe höchstens 25 fehlerhafte Teile befinden?
Also ich habe mir gedacht, dass man die Aufgabe mit der Formel:
[mm] \vektor{n \\ k} p^{k} (1-p)^{n-k} [/mm] berechnet, wobei n=1000;k=25;p=0,1 ist.
Mit so großen Zahlen kann ich aber nicht rechnen.
Was mache ich falsch???
Gruß

        
Bezug
zu große Zahl?: Antwort
Status: (Antwort) fertig Status 
Datum: 08:07 Mo 05.02.2007
Autor: VNV_Tommy

Hallo Woodstock!

> Hallo
>  
> Ich komme bei dieser Aufgabe nicht weiter:
>  Man eine Stichprobe von 1000. Eine fehlerquote von 10%.
> Wie groß ist die Wahrscheinlichkeit, das unter der
> Stichprobe höchstens 25 fehlerhafte Teile befinden?
>  Also ich habe mir gedacht, dass man die Aufgabe mit der
> Formel:
>  [mm]\vektor{n \\ k} p^{k} (1-p)^{n-k}[/mm] berechnet, wobei
> n=1000;k=25;p=0,1 ist.
>  Mit so großen Zahlen kann ich aber nicht rechnen.
>  Was mache ich falsch???

Im Grund machst du nichts falsch. :-)

Ich nehme an, die bereitet der Binomialkoeffizient Schwierigkeiten (1000! ist schwer mit einem herkömmlichen Taschenrechner zu ermitteln). Man kann sich diesen allerdings mit normalem Kürzen vereinfachen.

Für deinen Fall gilt ja:
[mm] \vektor{n \\ k}=\bruch{n!}{k!*(n-k)!}=\bruch{1000!}{\blue{25!}*\red{975!}}=\bruch{1000*999*998*...*25*24*23*22*...*3*2*1}{\blue{25*24*23*22*...*3*2*1}*\red{975*974*973*...*3*2*1}} [/mm]

Wenn du nun im Zähler und Nenner das Produkt der Zahlen von 975 bis 1 kürzt dann bleibt nur noch folgendes zu ermitteln:

[mm] \bruch{1000!}{\blue{25!}*\red{975!}}=\bruch{1000*999*998*...*976}{\blue{25*24*23*22*...*3*2*1}}=\bruch{1000*999*998*...*976}{25!} [/mm]

Das Einzige was dir nun noch ein wenig Arbeit machen könnte, wäre das Produkt im Zähler zu berechnen.

[edit:
diesen Bruch berechnest du "Zickzack":
1. Zahl im Zähler durch 1. Zahl im Nenner mal 2. Zahl im Zähler... informix.]  


Gruß,
Tommy

Bezug
                
Bezug
zu große Zahl?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:16 Do 08.02.2007
Autor: Woodstock_x

Vielen Dank für deine Hilfe. Du hast mein Problem richtig erkannt.

Gruß

Woodstock

Bezug
        
Bezug
zu große Zahl?: Antwort
Status: (Antwort) fertig Status 
Datum: 14:52 Do 08.02.2007
Autor: Walde

Hi Woodstock,

Tommy hat deine Frage ja schon (richtig) beantwortet, aber in der Praxis bedient man sich normalerweise einer anderen Methode.

Man kann die Binomialverteilung durch durch die Normalverteilung approximieren, falls die Faustregel  n*p(1-p)>9 erfüllt ist.

So werden diese Binomialverteilungs-Aufgaben normalerweise gelöst, deren Wahrscheinlichkeiten man nicht in der Tabelle ablesen kann, weil das n oder das p nicht tabelliert sind. Ihr solltet das in der Schule gehabt haben,ansonsten kommt es wohl nicht dran. Keiner verlangt in einer Arbeit von dir, dass du 30 min lang Zahlen in einen Taschenrechner eintippst. Denn das müsstest du ansonsten (bedenke, dass nach [mm] P(X\red{\le}25) [/mm] gefragt ist, d.h. viel tippen).

Approximation durch die Normalverteilung sieht dann so aus:

X  binomialverteilt mit n und p

n*p(1-p)=90>9, d.h, approximation durch Normalveretilung erlaubt.

d.h. [mm] Z=\bruch{X-n*p}{\wurzel{n*p*(1-p)}} [/mm] ist Standardnormalverteilt mit [mm] \mu=0 [/mm] und [mm] \sigma=1 [/mm]

usw. falls du nicht weisst, was ich hier machen will, habt ihr es wohl noch nicht behandelt.

L G walde

Bezug
                
Bezug
zu große Zahl?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:37 Fr 09.02.2007
Autor: Woodstock_x

Hallo

Vielen Dank für deine Anmerkung. Ich behandele das Thema gar nicht in der Schule. Ich arbeite es nach, da wir es nicht in Mathe hatten und ich mir sicher bin, dass ich es beim Studium brauche.
Die Normalverteilung nehme ich als nächstes durch. Also werde ich mich nochmal elden, wenn ich es dann nicht verstehe.
Gruß
Woodstock


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]