matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Abbildungenzeigen, dass abb. linear ist
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Abbildungen" - zeigen, dass abb. linear ist
zeigen, dass abb. linear ist < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zeigen, dass abb. linear ist: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:38 Mo 25.01.2010
Autor: meep

Aufgabe
1. [mm] (x_1,x_2) [/mm] -> [mm] (1+x_1 [/mm] , [mm] x_2) [/mm]
2. [mm] (x_1,x_2) [/mm] -> [mm] (x_2, x_1) [/mm]

hi,

ich soll zeigen ob die abb. in der aufgabe linear sind.
die definition ist mir bekannt.
die homogenität bekomm ich hin, scheitern tu ich bei der additivität.

zu 1:

[mm] (ax_1,ax_2) [/mm] -> [mm] (1+ax_1 [/mm] , [mm] ax_2) \not= [/mm] a * [mm] (1+x_1 [/mm] , [mm] x_2) [/mm]

das sollte stimmen. die funktion ist also schonmal nicht homogen.

nun weiß ich aber nicht wie ich die additivität zeigen soll. da bräcuhte ich hilfe.


mfg

meep





        
Bezug
zeigen, dass abb. linear ist: Antwort
Status: (Antwort) fertig Status 
Datum: 09:56 Mo 25.01.2010
Autor: fred97


> 1. [mm](x_1,x_2)[/mm] -> [mm](1+x_1[/mm] , [mm]x_2)[/mm]
>  2. [mm](x_1,x_2)[/mm] -> [mm](x_2, x_1)[/mm]

>  hi,
>  
> ich soll zeigen ob die abb. in der aufgabe linear sind.
>  die definition ist mir bekannt.
>  die homogenität bekomm ich hin, scheitern tu ich bei der
> additivität.
>  
> zu 1:
>  
> [mm](ax_1,ax_2)[/mm] -> [mm](1+ax_1[/mm] , [mm]ax_2) \not=[/mm] a * [mm](1+x_1[/mm] , [mm]x_2)[/mm]
>  
> das sollte stimmen. die funktion ist also schonmal nicht
> homogen.
>  
> nun weiß ich aber nicht wie ich die additivität zeigen
> soll. da bräcuhte ich hilfe.

Um die Additivität der 1. Abb. mußt Du Dich nicht mehr kümmern, denn sue ist nicht linear


Nun gehe mal

              2. $ [mm] (x_1,x_2) [/mm] $ -> $ [mm] (x_2, x_1) [/mm] $

an


FRED


>  
>
> mfg
>  
> meep
>  
>
>
>  


Bezug
                
Bezug
zeigen, dass abb. linear ist: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:10 Mo 25.01.2010
Autor: meep

zu 1:

ja ist nicht linear, da die homogenität ja verletzt ist.

zu 2:

ich weiß einfach nicht wie ich die definition der additivität anwenden soll.

es heißt ja: f(x+y) = f(x) + f(y)

wäre es dann so ?

[mm] (x_1+y_1, x_2+y_2) [/mm] -> ( [mm] x_2+y_2, x_1+y_1) [/mm] = [mm] (x_2,x_1) [/mm] + [mm] (y_2,y_1) [/mm]

= [mm] f(x_1,x_2) [/mm] + [mm] f(y_1,y_2) [/mm] = f(x) + f(y)

und die homogenität wäre dann:

[mm] f(ax_1,ax_2) [/mm] = [mm] (ax_2,ax_1) [/mm] = a * [mm] (x_2,x_1) [/mm] = [mm] a*f(x_1,x_2) [/mm]

also laut meiner rechnung wäre sie dann linear.

grüße

meep







Bezug
                        
Bezug
zeigen, dass abb. linear ist: Antwort
Status: (Antwort) fertig Status 
Datum: 10:11 Mo 25.01.2010
Autor: fred97


> zu 1:
>  
> ja ist nicht linear, da die homogenität ja verletzt ist.
>  
> zu 2:
>  
> ich weiß einfach nicht wie ich die definition der
> additivität anwenden soll.
>  
> es heißt ja: f(x+y) = f(x) + f(y)
>  
> wäre es dann so ?
>
> [mm](x_1+y_1, x_2+y_2)[/mm] -> ( [mm]x_2+y_2, x_1+y_1)[/mm] = [mm](x_2,x_1)[/mm] +
> [mm](y_2,y_1)[/mm]
>
> = [mm]f(x_1,x_2)[/mm] + [mm]f(y_1,y_2)[/mm] = f(x) + f(y)
>
> und die homogenität wäre dann:
>
> [mm]f(ax_1,ax_2)[/mm] = [mm](ax_2,ax_1)[/mm] = a * [mm](x_2,x_1)[/mm] = [mm]a*f(x_1,x_2)[/mm]
>  
> also laut meiner rechnung wäre sie dann linear.
>  
> grüße
>  
> meep


Alles richtig !

FRED


>  
>
>
>
>
>  


Bezug
                                
Bezug
zeigen, dass abb. linear ist: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:13 Mo 25.01.2010
Autor: meep

dann bin ich ja beruhigt, lineare algebra ist teils so verwirrend.

danke fürs drüberschauen fred.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]