matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebrazeige existenz von n: n<=x<n+1
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Algebra" - zeige existenz von n: n<=x<n+1
zeige existenz von n: n<=x<n+1 < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zeige existenz von n: n<=x<n+1: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:21 Mi 02.05.2012
Autor: elmanuel

Aufgabe
zeige das gilt: [mm] \forall [/mm] x [mm] \in \IR \exists [/mm] ! n [mm] \in \IZ [/mm] : n [mm] \le [/mm] x < (n+1)


Hallo liebe Gemeinde!

Ich habe versucht das über die Wohlordnung von Teilmengen aus [mm] \IZ [/mm] zu zeigen und die leeren Mengen durch die Archimedische Eigenschaft auszuschließen.

Leider komme ich auf keinen grünen Zweig, ich nehme zuerst x>=0 an und komme nicht soweit das ich dann x<0 wieder darauf zurückführen kann...

Die Tatsache das es so ist das jede reele zahl nur eine nächst kleinere ganze zahl haben kann ist mir logisch aber das zu zeigen fällt mir schwer

Bin für jeden Tipp dankbar...


        
Bezug
zeige existenz von n: n<=x<n+1: Antwort
Status: (Antwort) fertig Status 
Datum: 23:19 Mi 02.05.2012
Autor: Marcel

Hallo,

> zeige das gilt: [mm]\forall[/mm] x [mm]\in \IR \exists[/mm] ! n [mm]\in \IZ[/mm] : n
> [mm]\le[/mm] x < (n+1)

kennst Du die Gaußklammer?

Also [mm] $[x]:=\sup\{z \in \IZ: z \le x\}\,.$ [/mm] Ich schreibe hier extra [mm] $\sup\,,$ [/mm] weil es meiner Meinung nach wohl Teil Deiner Aufgabe ist, auch nachzuweisen, dass dieses Supremum ein Maximum ist!
Und dass dann [mm] $n:=[x]\,$ [/mm] erfüllt $n [mm] \le [/mm] x < n+1:$
Per Definitionem ist dann $n [mm] \le [/mm] x$ klar. Überlege Dir dann, dass, wenn $n+1 [mm] \le [/mm] x$ wäre, dann aber auch $[x] [mm] \ge [/mm] n+1$ folgte... Wieso ist das ein Widerspruch? (Beachte [mm] $[x]=n\,.$) [/mm]

P.S.
Damit ist erstmal die Existenz solcher zu $x [mm] \in \IR$ [/mm] passenden [mm] $n=n(x)\,$ [/mm] gezeigt. Das [mm] $!\,$ [/mm] in der Aufgabenformulierung besagt, dass Du auch noch die Eindeutigkeit zeigen musst!

P.P.S.
Bei der Eindeutigkeit: Mach' etwa den Ansatz: Sei $m=n+r$ - dabei $n:=[x] [mm] \in \IZ$ [/mm] - mit einem $r [mm] \in \IZ$ [/mm] so, dass sowohl $n [mm] \le [/mm] x < n+1$ als auch $m [mm] \le [/mm] x < m+1$ gilt... Zeige, dass dann [mm] $r=0\,$ [/mm] folgt.

Tipp:
Du kannst dann die beiden Ungleichungen
[mm] $$\text{I)}\;\;\;n \le [/mm] x < [mm] n+1\,,$$ [/mm]
[mm] $$\text{II)}\;\;\;-n-1 [/mm] < r-x [mm] \le [/mm] -n$$
addieren...

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]