matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungeny'=cos(y) eindeutige Lösung?
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - y'=cos(y) eindeutige Lösung?
y'=cos(y) eindeutige Lösung? < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

y'=cos(y) eindeutige Lösung?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:55 Do 09.12.2010
Autor: M-Ti

Hallo!

Ich habe hier folgende Aufgabe vor mir:
y'=cos (y) . Man soll begründen, dass die DGL für alle AW [mm] y(0)=y_{0} [/mm] eine eindeutig bestimmte Lösung hat.

[mm] \bruch{dy}{dt}=cos [/mm] (y) <-> [mm] \bruch{dy}{cos(y)}=dt [/mm]

Was ist denn [mm] \integral_{a}^{b}{\bruch{1}{cos(y)} dy}? [/mm]

Gibt es hier im Forum eine Tabelle für solche Integrale?

Wenn ich die DGL gelöst habe, wie muss die Begründung ausschauen?

Besten Dank.

Gruß
M-TI

        
Bezug
y'=cos(y) eindeutige Lösung?: Antwort
Status: (Antwort) fertig Status 
Datum: 18:46 Do 09.12.2010
Autor: schachuzipus

Hallo M-Ti,

> Hallo!
>
> Ich habe hier folgende Aufgabe vor mir:
> y'=cos (y) . Man soll begründen, dass die DGL für alle
> AW [mm]y(0)=y_{0}[/mm] eine eindeutig bestimmte Lösung hat.
>
> [mm]\bruch{dy}{dt}=cos[/mm] (y) <-> [mm]\bruch{dy}{cos(y)}=dt[/mm]
>
> Was ist denn [mm]\integral_{a}^{b}{\bruch{1}{cos(y)} dy}?[/mm]
>
> Gibt es hier im Forum eine Tabelle für solche Integrale?

Bestimmt, aber die Aufgabe ist wohl kaum in diesem Sinne gemeint ...

>
> Wenn ich die DGL gelöst habe, wie muss die Begründung
> ausschauen?

Denke mal an die Lösbarkeits- und Eindeutigkeitssätze, die ihr hattet.

Stichwort: Picard-Lindelöf, Lipschitzstetigkeit ...

Überlege mal in diese Richtung.

>
> Besten Dank.
>
> Gruß
> M-TI

LG

schachuzipus


Bezug
                
Bezug
y'=cos(y) eindeutige Lösung?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:54 Do 09.12.2010
Autor: M-Ti

OK, mach ich. Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]