matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-Funktionenx^x für negative Werte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - x^x für negative Werte
x^x für negative Werte < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

x^x für negative Werte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:26 So 04.06.2006
Autor: mateusz

Hallo. Ich bin neulich eher zufällig auf die Funktion [mm] x^x [/mm] gestoßen. Für
x ∈ [mm] \IR+ [/mm] ist die Funktion einfach zu bestimmen. Auch wenn sie nicht
für x ∈ [mm] \IR- [/mm] definiert ist (aufgrund der Schreibweise [mm] e^{x\cdot{}\ln(x)}, [/mm] die für die Ableitung benutzt wird), gibt es doch einige bestimmbare Werte (z.B.   x= -1 ⇒ y=-1). Meine Überlegung war jetzt eben diese Werte durch eine (oder zwei, wegen der positiven Lösungen(TR)) Hüllkurve(n) zu beschreiben. Es ist klar, dass für -x [mm] \to \infty [/mm] die Hüllkurve die x-Achse als Asyptote hat. Nur irgendwie brauche ich Starthilfe bei der Funktionsbestimmung.

Danke im Vorraus

Mateusz

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
x^x für negative Werte: Antwort
Status: (Antwort) fertig Status 
Datum: 01:01 Mo 05.06.2006
Autor: Martin243

Hallo,

das ist ja gar nicht so schwer wie es auf den ersten Blcik aussehen mag.
Ich wüsste nicht, warum man die Funktion nicht für irrationale Zahlen nicht definieren dürfte.
Das Argument mit der Ableitung bedeutet nur, dass die Funktion nicht differenzierbar ist, zurecht, denn sie ist ziemlich zerfurcht.
Aber wenn man sie sich mal genauer ansieht, dann ist sie nur an abzählbar vielen Stellen nicht definiert, denn:

Irrationale Zahlen sind kein Problem, nur bei rationalen Zahlen taucht ab und zu ein Problem auf, denn dann gilt für x = [mm] \bruch{-m}{n}, m,n\in\IN: [/mm]
[mm] x^x [/mm] = [mm] (\bruch{-m}{n})^\bruch{-m}{n} [/mm] = [mm] \wurzel[n]{\bruch{1}{(\bruch{-m}{n})^m}} [/mm]

Ist nun zufällig n gerade und m ungerade, dann versuchen wir, eine Wurzel geraden Grades aus einer negativen Zahl zu ziehen, was ja in [mm] \IR [/mm] nicht geht.

In allen anderen Fällen können wir getrost schreiben:
[mm] x^x [/mm] = [mm] -(-x)^x [/mm]

Diese Beziehung gilt dann für alle Fälle außer für rationale [mm] x=\bruch{-m}{n} [/mm] mit m ungerade und n gerade.

Also ergibt [mm] -(-x)^x [/mm] eine schöne Hüllkurve.


Gruß
Martin


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]