matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungx²/(4-x²)
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - x²/(4-x²)
x²/(4-x²) < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

x²/(4-x²): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:32 Di 08.04.2008
Autor: Teufel

Hi!

Weiß jemand, wie man das hier ohne Partialbruchzerlegung kleinkriegt?

[mm] \integral_{}^{}{\bruch{x²}{4-x²} dx} [/mm]

Ersetzt habe ich vergeblich, x²=t bringt nicht viel, bei x²=sint bleibe ich irgendwann an [mm] \integral_{}^{}{\bruch{1}{cost} dt} [/mm] hängen.

Partielle Integration, wenn ich das Integral in [mm] \integral_{}^{}{x\bruch{x}{4-x²} dx} [/mm] umschreibe, bringt mich auch nicht weiter.

Danke!

[anon] Teufel

        
Bezug
x²/(4-x²): umformen
Status: (Antwort) fertig Status 
Datum: 15:36 Di 08.04.2008
Autor: Loddar

Hallo Teufel!


Formen wir den Bruch wie folgt um:

[mm] $$\bruch{x^2}{4-x^2} [/mm] \ = \ [mm] -\bruch{-x^2}{4-x^2} [/mm] \ = \ [mm] -\bruch{4-x^2-4}{4-x^2} [/mm] \ = \ [mm] -\left(\bruch{4-x^2}{4-x^2}-\bruch{-4}{4-x^2}\right) [/mm] \ = \ [mm] -1+\bruch{4}{4-x^2}$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
x²/(4-x²): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:47 Di 08.04.2008
Autor: Teufel

Hi, danke erstmal!

Jo, das habe ich auch schon probiert, aber [mm] \bruch{4}{4-x²} [/mm] zu integrieren wollte mir auch nicht so recht gelingen.

[anon] Teufel

Bezug
                        
Bezug
x²/(4-x²): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:50 Di 08.04.2008
Autor: Tyskie84

Hallo Teufel!

Musst du den unbedingt den Term [mm] \bruch{4}{4-x²} [/mm] ohne Partialbruchzerlegung integrieren?

[hut] Gruß

Bezug
                                
Bezug
x²/(4-x²): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:55 Di 08.04.2008
Autor: Teufel

Hm, ausdrücklich ausgeschlossen ist es nicht, und ich weiß auch, dass ich dann [mm] \bruch{1}{x+2}-\bruch{1}{x-2} [/mm] draus machen könnte, aber in der Schule lernt man das ja im Normalfall nicht kennen, und so schummeln will ich ja auch nicht ;) Zumindest, wenn es auch mit anderen Methoden geht.

[anon] Teufel

Bezug
                        
Bezug
x²/(4-x²): Antwort
Status: (Antwort) fertig Status 
Datum: 16:17 Di 08.04.2008
Autor: schachuzipus

Hallo Teufel,

ich habe noch eine Idee, wie es mit partieller Integration klappen könnte.

Schreibe dazu das Integral ein wenig um:

[mm] $\int{\frac{x^2}{4-x^2} \ dx}=\int{x\cdot{}\frac{x}{4-x^2} \ dx}=\blue{-\frac{1}{2}}\cdot{}\int{x\cdot{}\frac{\blue{-2}\cdot{}x}{4-x^2} \ dx}$ [/mm]

Nun versuche mal eine partielle Integration, nimm dazu $u=x$ und [mm] $v'=\frac{-2x}{4-x^2}$ [/mm]

Beachte, dass du, wenn du eine Stammfkt zu $v'$ berechnest, ein logarithmisches Integral erhältst

Oder, um es "zu Fuß" auszurechnen, substituiere [mm] $z:=4-x^2$ [/mm]

LG

schachuzipus

Bezug
                                
Bezug
x²/(4-x²): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:42 Di 08.04.2008
Autor: Teufel

Hi, danke!

Ja, da war ich auch schon, aber ich merke gerade, dass ich da nicht ganz zu Ende gedacht habe. Musste dann ln(4-x²) integrieren und hab dann wohl wegen den Fehlschlägen davor an der Stelle aufgehört anstatt den Logarithmus einfach mal aufzuspalten.

Danke dir!

[anon] Teufel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]