matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-Funktionenx=a lg x
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Exp- und Log-Funktionen" - x=a lg x
x=a lg x < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

x=a lg x: Gleichung nach x umstellen...
Status: (Frage) beantwortet Status 
Datum: 22:47 Di 05.06.2007
Autor: utwem

Aufgabe
Der Graph der Funktion f4, die x-Achse und die Parallele zur y-Achse durch den Punkt P(e²|fa(e²)[Anm. von mir: =8/e²]) begrenzen eine Fläche vollständig. Berechnen sie den Inhalt der Fläche!

Hallo ersteinmal, bei der Vorbereitung auf die anstehende Mathematikklausur bin ich auf etwas merkwürdiges gestoßen, zumindest weiß ich nicht weiter:
(Ergibt sich aus der o.g. Aufgabe für die schnittpunkte der der Funktion, die für´s Integral gebraucht werden: 8/e²=4/x*ln x (=f4))
Umgestellt ergab das
2x= e² ln x
Der TR zeigt mir 2 Nullstellen, aber wie stelle ich diese Gleichung nach x um?!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
x=a lg x: Antwort
Status: (Antwort) fertig Status 
Datum: 22:59 Di 05.06.2007
Autor: leduart

Hallo
Allgemein kann man so Gleichungen nicht lösen. aber P liegt doch auf deiner Kurve, also ist der Schnittpunkt P und siehe da wenn du [mm] x=e^2 [/mm] einsetzt stimmt es.
Du musst also einfach die Fkt bis [mm] e^2 [/mm] integr. und von dem Rechteck [mm] e^2 [/mm] * [mm] f(e^2) [/mm] subtrahieren.
Ne skizze hät dir das gezeigt.
Skizzen sind das A und O für gute Abis!!
Gruss leduart


Bezug
                
Bezug
x=a lg x: und x2?
Status: (Frage) beantwortet Status 
Datum: 16:53 Mi 06.06.2007
Autor: utwem

Ok, der eine Schnittpunkt war mehr oder weniger gegeben, aber wie berechnet man den 2.? (Bei ~1,5)
Ich kann die funktion ja nicht von 0 bis e² integrieren, da sich bei x=0 eine Polstelle befindet und x gegem [mm] -\infty [/mm] geht. Wie erhalte ich also meine untere Integrationsgrenze? (Um die Skizze hat sich schon mein GTR gekümmert ;) )
wenn ich [mm] \integral_{1,5}^{e²}{\bruch{4}{x}*\ln x - \bruch{8}{e²} dx} [/mm] rechne, komme ich auf ungefähr 1,295, dabei habe ich die 1,5 aber nur ermittelt, nicht berechnet

Bezug
                        
Bezug
x=a lg x: Antwort
Status: (Antwort) fertig Status 
Datum: 19:43 Mi 06.06.2007
Autor: Zwerglein

Hi, utwem,

gewöhn' Dir bitte an, Deine Fragen ausführlich zu stellen!
Wo ist z.B. der Funktionsterm der Funktion [mm] f_{4}? [/mm]
Ich vermute mal:
[mm] f_{4}(x)=\bruch{4}{x}*ln(x). [/mm]

Diese Funktion hat zwar einen Pol bei x=0, aber auch eine Nullstelle und zwar: x=1.

Dies ist Deine untere Integrationsgrenze!

Die obere Integrationsgrenze ist die x-Koordinate des Punktes P, also: [mm] e^{2}. [/mm]
(Die y-Koordinate dieses Punktes ist im Sinne der Aufgabe uninteressant!)

Demnach sollst Du berechnen:

[mm] \integral_{1}^{e^{2}}{\bruch{4}{x}*ln(x) dx} [/mm]

was Du mit Hilfe der Substitution z = ln(x) hinkriegen müsstest.

mfG!
Zwerglein

Bezug
                                
Bezug
x=a lg x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:17 Mi 06.06.2007
Autor: utwem

Aber die Fläche wird doch auch von der Gerade y=f4(e²) begrenzt!
[Externes Bild http://united-upload.de/images/files/39e4bf48f15cd34/v94YtVlUi0.png]
Mit der Stammfunktion [2(/ln x)²] 1 bis e² (= 8) berechne ich doch aber die Fläche der gesamten Funktion. Nun muss ich doch noch den oberen Teil abziehen, darum ging es mir doch die ganze Zeit, ich entschuldige mich, sollte ich mich unklar ausgedrückt haben...

mfg

Bezug
                                        
Bezug
x=a lg x: Antwort
Status: (Antwort) fertig Status 
Datum: 21:23 Mi 06.06.2007
Autor: Gonozal_IX

Hiho,

> Aber die Fläche wird doch auch von der Gerade y=f4(e²)
> begrenzt!

Wie kommst du dadrauf? Davon steht nix in der Aufgabenstellung.

MfG,
Gono.

Bezug
                                                
Bezug
x=a lg x: Korrekturmitteilung
Status: (Korrektur) richtig (detailiert geprüft) Status 
Datum: 21:43 Mi 06.06.2007
Autor: utwem

oh, stimmt, jetzt wo du's sagst' Es war ja von einer Parallele zur Y-Achse die  Rede! *kopfgegnwandhau*...
Ich sollte die Aufgeben besser lesen...
Aber was hatte ich eigentlich tun müssen, wenn da wirklich noch eine Gerade parallel zur x-achse durch [mm] f4(e^2) [/mm] verlaufen wäre?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]