matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10wurzelgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathe Klassen 8-10" - wurzelgleichung
wurzelgleichung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

wurzelgleichung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:54 Fr 03.06.2005
Autor: maba

also die gleichung lautet

[mm] \wurzel{7x + 4} [/mm] + x = 8

und ich möchte wissen was x ist


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
wurzelgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:06 Fr 03.06.2005
Autor: Sigrid

Hallo maba,

Zunächst mal. Wie wäre es das nächste Mal mit einer freundlichen Begrüßung.

> also die gleichung lautet
>  
> [mm]\wurzel{7x + 4}[/mm] + x = 8
>  
> und ich möchte wissen was x ist

Was hast du dir denn selbst überlegt, wie du an eine Lösung kommen kannst? Gib das nächste Mal bitte auch Lösungsideen an.

Der erste Schritt ist, die Wurzel zu isolieren, d.h. du subtrahierst auf beiden Seiten x. Dann quadrierst du. Ich denke, dann kommst du alleine weiter. Du musst aber daran denken, dass du nur mögliche Lösungen erhälst. Du musst also überprüfen, ob deine x-Werte auch tatsächllich Lösungen sind.

Gruß
Sigrid

>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
wurzelgleichung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:14 Fr 03.06.2005
Autor: maba

Ok tut mir leid hallo erstmal

[mm]\wurzel{7x + 4}[/mm] + x = 8 | -x
[mm]\wurzel{7x + 4}[/mm] = 8 - x  | quadrieren
7x + 4 = 64 - [mm] x^{2} [/mm]  | + [mm] x^{2} [/mm]
[mm] x^{2} [/mm] + 7x + 4 = 64 | - 64
[mm] x^{2} [/mm] + 7x - 60 = 0

dann pq-formel

das problem ist nur wenn ich das so mache bekomme ich
-12 und 5 raus

wenn ich aber 5 in den linken teil der gleichnung einsetzte ist das ergebnis nicht 8

cu maba

Bezug
                        
Bezug
wurzelgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 Fr 03.06.2005
Autor: Stefan

Hallo!

Zunächst einmal: Du hast dich verrechnet. Das kläre ich unten auf. Aber was viel wichtiger ist, ist deine grundsätzliche Erkenntnis, die du erzielt hast. Es stimmt, dass nicht alle scheinbaren Lösungen einer Wurzelgleichung, die man durch Quadrieren aufgelöst hat, auch tatsächlich Lösungen der Wurzelgleichung sind!

Das liegt einfach daran, dass das Quadrieren beider Seiten einer Gleichung keine Äquivalenzumformung ist.

Denn aus der wahren Gleichung

[mm] $5^2=(-5)^2$ [/mm]

folgt ja noch lange nicht

$5=-5$.

Daher erhältst du nach dem Quadrieren beider Seiten einer Gleichung nur Lösungskandidaten. Durch Einsetzen in die Ausgangsgleichung kannst du dann feststellen, welche deiner Kandidaten auch tatsächlich Lösungen sind.

Jetzt aber zu deinem Fehler:

> [mm]\wurzel{7x + 4}[/mm] + x = 8 | -x
>  [mm]\wurzel{7x + 4}[/mm] = 8 - x  | quadrieren
>  7x + 4 = 64 - [mm]x^{2}[/mm]  | + [mm]x^{2}[/mm]

[notok]

Was ergibt [mm] $(8-a)^2$ [/mm] ?

Denke mal an die Bimomischen Formeln... :-)

Liebe Grüße
Stefan


Bezug
                                
Bezug
wurzelgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:34 Fr 03.06.2005
Autor: maba

thx ich habs verstanden hatte nur nicht an bino gedacht weil ja keine klammer drum steht

cu maba

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]