matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastikwürfel mit n seiten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - würfel mit n seiten
würfel mit n seiten < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

würfel mit n seiten: hilfe und tipps
Status: (Frage) beantwortet Status 
Datum: 21:20 Mi 06.05.2009
Autor: howtoadd

Aufgabe
Gegeben ist ein fairer Würfel mit n Seiten, dessen Seiten beschriftet sind mit 1, 4, 9, 16, . . . n².
Es wird einmal gewürfelt. Berechnen Sie Erwartungswert und Varianz des zugehörigen Wahrscheinlichkeitsmaßes.

hallo an alle...

wie man erwartungswert und varianz ausrechnet kann ich mittlerweile, aber wie kriege ich das mit dieser aufgabe hin?

wie komme ich von dieser aufgabenstellung auf meine rechnung?

ich denke ein paar ansätze könnten mir helfen,

dankeschön!
howtoadd

        
Bezug
würfel mit n seiten: Antwort
Status: (Antwort) fertig Status 
Datum: 21:38 Mi 06.05.2009
Autor: luis52

Moin,

es ist $P(X=x)=1/n$ fuer [mm] $x=1,4,9,...,n^2$. [/mm] Nun berechne den Erwartungswert bzw. die Varianz.

vg Luis

Bezug
                
Bezug
würfel mit n seiten: vorschlag
Status: (Frage) beantwortet Status 
Datum: 22:08 Mi 06.05.2009
Autor: howtoadd

ich würde sagen der erwartungswert ist :

[mm] \summe_{i=1}^{n} [/mm] i² * [mm] \bruch{1}{n} [/mm]

das ist gleich:

[mm] \bruch{n(n+1) * (1+2n) }{ 6} [/mm] * [mm] \bruch{1}{n} [/mm]

das gekürzt:

E(X)= [mm] \bruch{(n+1) * (1+2n) }{ 6} [/mm]

jetzt die varianz :
[mm] \summe_{i=1}^{n} i^4 [/mm] * [mm] \bruch{1}{n} [/mm]

Var(X) = [mm] \bruch{(1+n)*(1+2n) (-1+3n+3n²) }{ 30} [/mm]  - (E(X))²



Bezug
                        
Bezug
würfel mit n seiten: Antwort
Status: (Antwort) fertig Status 
Datum: 22:35 Mi 06.05.2009
Autor: glie


> ich würde sagen der erwartungswert ist :
>  
> [mm]\summe_{i=1}^{n}[/mm] i² * [mm]\bruch{1}{n}[/mm]
>  
> das ist gleich:
>  
> [mm]\bruch{n(n+1) * (1+2n) }{ 6}[/mm] * [mm]\bruch{1}{n}[/mm]
>  
> das gekürzt:
>  
> E(X)= [mm]\bruch{(n+1) * (1+2n) }{ 6}[/mm]    [daumenhoch]
>
> jetzt die varianz :
>  [mm]\summe_{i=1}^{n} i^4[/mm] * [mm]\bruch{1}{n}[/mm]
>  
> Var(X) = [mm]\bruch{(1+n)*(1+2n) (-1+3n+3n²) }{ 30}[/mm]  - (E(X))²

Sieht gut aus. Ist halt noch bisschen Rechnerei.

Gruß Glie

>
>  


Bezug
                        
Bezug
würfel mit n seiten: Antwort
Status: (Antwort) fertig Status 
Datum: 22:45 Mi 06.05.2009
Autor: luis52

[notok]


[mm] $\operatorname{E}[X]= \bruch{1}{n}\summe_{i=1}^{n} i^3 [/mm]  $, [mm] $\operatorname{E}[X^2]= \bruch{1}{n}\summe_{i=1}^{n} i^4 [/mm] $, [mm] $\operatorname{Var}[X]=\operatorname{E}[X^2]-\operatorname{E}[X]^2$. [/mm]
vg Luis    

Bezug
                                
Bezug
würfel mit n seiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:49 Mi 06.05.2009
Autor: glie


> [notok]
>  
>
> [mm]\operatorname{E}[X]= \bruch{1}{n}\summe_{i=1}^{n} i^3 [/mm],
> [mm]\operatorname{E}[X^2]= \bruch{1}{n}\summe_{i=1}^{n} i^4 [/mm],
> [mm]\operatorname{Var}[X]=\operatorname{E}[X^2]-\operatorname{E}[X]^2[/mm].
>  vg Luis    


Hallo Luis, wieso gibst du ein [notok]?
Er hats doch genauso gerechnet.
Ausserdem ist
[mm] \operatorname{E}[X]= \bruch{1}{n}\summe_{i=1}^{n} i^{\red{2}} [/mm]

Gruß Glie

Bezug
                                        
Bezug
würfel mit n seiten: super
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:05 Do 07.05.2009
Autor: howtoadd

vielen dank!

Bezug
                                        
Bezug
würfel mit n seiten: Antwort
Status: (Antwort) fertig Status 
Datum: 08:19 Do 07.05.2009
Autor: luis52


> Hallo Luis, wieso gibst du ein [notok]?
>  Er hats doch genauso gerechnet.
>  Ausserdem ist
>  [mm]\operatorname{E}[X]= \bruch{1}{n}\summe_{i=1}^{n} i^{\red{2}}[/mm]

>

Moin glie,

du hast vollkommen recht, da war *ich* auf dem falschen Dampfer, sorry. [peinlich]

vg Luis  

PS: Zur Busse habe ich mal mit Mathematica die Varianz ausgerechnet:

[mm] $\frac{(n^2-1)(2n+1)(8n+1)}{180}$.[/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]