matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Matrizenwronski-Matrix Expliziet Bew.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - wronski-Matrix Expliziet Bew.
wronski-Matrix Expliziet Bew. < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

wronski-Matrix Expliziet Bew.: Verbesserung der Beweisführung
Status: (Frage) beantwortet Status 
Datum: 18:31 Fr 20.03.2015
Autor: JohannesK

Aufgabe
Seien [mm] f_{1}(x),f_{2}(x),...,f_{n}(x) [/mm] (n-1)-mal stetig differenziebare Funktionen auf der Menge R

i.) Zeigen sie explizit , wenn die Menge M := {  [mm] f_{1}(x),f_{2}(x),...,f_{n}(x) [/mm] } linear abhänig ist folgt , dass
für  [mm] \forall [/mm] x [mm] \in [/mm]   R

|A| = [mm] \vmat{ f_{1}(x) & ... & f_{n}(x) \\ f_{1}'(x) & ... & f_{n}'(x) \\ ... & ... & ... \\ f_{1}^{n-1}(x) & ... & f_{n}^{n-1}(x) } [/mm]  = 0 gilt.

ii.) Schließen sie aus i.)

Existiert ein x [mm] \in [/mm]   R mit |A| ungleich 0, folgt die Menge M ist linear unabhänig.

Grüß euch,
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Die Grundlage der Aufgabe ist klar. Wir haben die klassische Wronski-Matrix , die ich für den Allgemeinen Fall eines Polynom N-Ordnung herleiten soll.

Erstmal nehm ich mir die Bedingung für Lineare Abhänigkeit:

[mm] a1f_{1}(x) [/mm] + [mm] a2f_{2}(x) [/mm] + ... + [mm] anf_{n}(x) [/mm] = 0    [mm] \forall [/mm] x [mm] \in [/mm] R   bei mindestens ein ai ungleich 0

z.z |A|
Dann Bau ich ein LGS auf mit n-1 Zeilen:

[mm] a1f_{1}(x) [/mm] + [mm] a2f_{2}(x) [/mm] + ... + [mm] anf_{n}(x) [/mm] = 0
[mm] a1f_{1}'(x) [/mm] + [mm] a2f_{1}'(x) [/mm] + ... + [mm] anf_{n}'(x) [/mm] = 0
....
[mm] a1f_{1}^{n-1}(x) [/mm] + [mm] a2f_{2}^{n-1}(x) [/mm] + ... + [mm] anf_{n}^{n-1}(x)= [/mm] 0

<=> -> Aufgrund Lineare Abhänigkeit zieh ich die Koefizienten raus



[mm] \vmat{ f_{1}(x) & ... & f_{n}(x) \\ f_{1}'(x) & ... & f_{n}'(x) \\ ... & ... & ... \\ f_{1}^{n-1}(x) & ... & f_{n}^{n-1}(x) } [/mm] * [mm] \vmat{ a1 \\ a2 \\ ... \\ an } [/mm] = [mm] \vmat{ 0 \\ 0 \\ ... \\ 0 } [/mm]

<=> -> Koefizienten-Matrix haut sich raus

[mm] \vmat{ f_{1}(x) & ... & f_{n}(x) \\ f_{1}'(x) & ... & f_{n}'(x) \\ ... & ... & ... \\ f_{1}^{n-1}(x) & ... & f_{n}^{n-1}(x) } [/mm] = 0    q.e.d

Reicht dies als Beweisführung oder würden hier bei einer Expliziten Beweisführung Schritte fehlen?, oder hab ich nen komplett falschen Denkansatz?

Und bei ii.) Weiß ich nicht genau wie ich vorgehen soll

MfG

Johannes




        
Bezug
wronski-Matrix Expliziet Bew.: Antwort
Status: (Antwort) fertig Status 
Datum: 08:58 Sa 21.03.2015
Autor: fred97


> Seien [mm]f_{1}(x),f_{2}(x),...,f_{n}(x)[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

(n-1)-mal stetig

> differenziebare Funktionen auf der Menge R
>  
> i.) Zeigen sie explizit , wenn die Menge M := {  
> [mm]f_{1}(x),f_{2}(x),...,f_{n}(x)[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

} linear abhänig ist folgt

> , dass
>  für  [mm]\forall[/mm] x [mm]\in[/mm]   R
>  
> |A| = [mm]\vmat{ f_{1}(x) & ... & f_{n}(x) \\ f_{1}'(x) & ... & f_{n}'(x) \\ ... & ... & ... \\ f_{1}^{n-1}(x) & ... & f_{n}^{n-1}(x) }[/mm]
>  = 0 gilt.
>  
> ii.) Schließen sie aus i.)
>  
> Existiert ein x [mm]\in[/mm]   R mit |A| ungleich 0, folgt die Menge
> M ist linear unabhänig.
>  Grüß euch,
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Die Grundlage der Aufgabe ist klar. Wir haben die
> klassische Wronski-Matrix , die ich für den Allgemeinen
> Fall eines Polynom N-Ordnung herleiten soll.
>  
> Erstmal nehm ich mir die Bedingung für Lineare
> Abhänigkeit:
>  
> [mm]a1f_{1}(x)[/mm] + [mm]a2f_{2}(x)[/mm] + ... + [mm]anf_{n}(x)[/mm] = 0    [mm]\forall[/mm] x
> [mm]\in[/mm] R   bei mindestens ein ai ungleich 0
>  
> z.z |A|
>  Dann Bau ich ein LGS auf mit n-1 Zeilen:
>  
> [mm]a1f_{1}(x)[/mm] + [mm]a2f_{2}(x)[/mm] + ... + [mm]anf_{n}(x)[/mm] = 0
>  [mm]a1f_{1}'(x)[/mm] + [mm]a2f_{1}'(x)[/mm] + ... + [mm]anf_{n}'(x)[/mm] = 0
>  ....
>  [mm]a1f_{1}^{n-1}(x)[/mm] + [mm]a2f_{2}^{n-1}(x)[/mm] + ... +
> [mm]anf_{n}^{n-1}(x)=[/mm] 0
>  
> <=> -> Aufgrund Lineare Abhänigkeit zieh ich die
> Koefizienten raus


Das hat doch mit "linear Abhängig" nichts zu tun. Obiges Gleichungssystem schreibst Du als Matrix-Vektor - Produkt. Das ist alles.


>  
>
>
> [mm]\vmat{ f_{1}(x) & ... & f_{n}(x) \\ f_{1}'(x) & ... & f_{n}'(x) \\ ... & ... & ... \\ f_{1}^{n-1}(x) & ... & f_{n}^{n-1}(x) }[/mm]
> * [mm]\vmat{ a1 \\ a2 \\ ... \\ an }[/mm] = [mm]\vmat{ 0 \\ 0 \\ ... \\ 0 }[/mm]
>  
> <=> -> Koefizienten-Matrix haut sich raus

Nichts dergleichen !!!!


>  
> [mm]\vmat{ f_{1}(x) & ... & f_{n}(x) \\ f_{1}'(x) & ... & f_{n}'(x) \\ ... & ... & ... \\ f_{1}^{n-1}(x) & ... & f_{n}^{n-1}(x) }[/mm]
> = 0    q.e.d
>  
> Reicht dies als Beweisführung oder würden hier bei einer
> Expliziten Beweisführung Schritte fehlen?, oder hab ich
> nen komplett falschen Denkansatz?
>  
> Und bei ii.) Weiß ich nicht genau wie ich vorgehen soll
>  
> MfG
>  
> Johannes
>  
>
>  

Vielleicht meinst Du das Richtige, vielleicht auch nicht..

Jedenfalls fällst Du Deiner Bezeichnungsweise zum Opfer. Wo es geht verwendest Du senkrechte Stiche !!!!

Für x [mm] \in [/mm] R sei

[mm] A=A(x)=\pmat{ f_{1}(x) & ... & f_{n}(x) \\ f_{1}'(x) & ... & f_{n}'(x) \\ ... & ... & ... \\ f_{1}^{n-1}(x) & ... & f_{n}^{n-1}(x) } [/mm]

Die [mm] f_i [/mm] sind l.a., also gibt es ein [mm] a^T=(a_1,a_2,...,a_n) \in \IR^n \setminus \{(0,....0)\} [/mm] mit

  [mm] a_1f_1(x)+....+a_nf_n(x)=0 [/mm]  für alle x [mm] \in [/mm] R.

Das bedeutet:

   A(x)a=0.


Damit hat das LGS A(x)z=0 eine nichttriviale Lösung. A(x) ist also nicht invertierbar und somit ist

   |A(x)|=det(A(x))=0.



ZU ii): oben haben wir gezeigt:  M l.a. [mm] \Rightarrow [/mm] det(A(x))=0 für alle x [mm] \in [/mm] R.

Was bedeutet es also, wenn det(A(x)) [mm] \ne [/mm] 0 ist für ein x [mm] \in [/mm] R ?

FRED




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]