matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitwo grenzwerte von fkt.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stetigkeit" - wo grenzwerte von fkt.
wo grenzwerte von fkt. < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

wo grenzwerte von fkt.: abschnittw. definierte fkt.
Status: (Frage) beantwortet Status 
Datum: 19:06 Mi 03.01.2007
Autor: jazzman88

Aufgabe
Zu f: [mm] \IR \to \IR [/mm] mit [mm] f(x)=\begin{cases} 2x^2, & \mbox{für } x \in \IQ \mbox{ } \\ x^3 + x, & \mbox{} sonst \mbox{} \end{cases} [/mm] bestimme man die Punkte [mm] x_0 \in \IR, [/mm] für die [mm] \limes_{x\rightarrow\ x_0} [/mm] existiert.

Hallo zusammen,

ich habe einige Schwierigkeiten mit dieser Aufg. ,weil man sich den Graph nicht einfach so vorstellen kann. Sind die gesuchten Punkte genau die, in denen die Fkt. stetig ist. welchen Ansatz könnte man den hier möglicherweise verfolgen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Danke!

        
Bezug
wo grenzwerte von fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 14:05 Do 04.01.2007
Autor: angela.h.b.


> Zu f: [mm]\IR \to \IR[/mm] mit [mm]f(x)=\begin{cases} 2x^2, & \mbox{für } x \in \IQ \mbox{ } \\ x^3 + x, & \mbox{} sonst \mbox{} \end{cases}[/mm]
> bestimme man die Punkte [mm]x_0 \in \IR,[/mm] für die
> [mm]\limes_{x\rightarrow\ x_0}[/mm] existiert.

Hallo,

eine Vorstellung vom Graphen kannst du Dir verschaffen, indem Du einfach einmal beide Graphen aufzeichnest. Die zu rationalen Argumenten gehörenden Werte liegen auf dem einen, die zu irrationalen Argumenten gehörenden auf dem anderen Graphen.

Die Frage ist nun: für welche [mm] x_0 [/mm] existiert [mm] \limes_{x\rightarrow\ x_0}f(x) [/mm] ?

Dazu muß man sich ersteinmal überlegen, was [mm] \limes_{x\rightarrow\ x_0}f(x)=c [/mm] bedeutet.
Es bedeutet: für JEDE Folge [mm] (x_n) [/mm] mit [mm] x_n [/mm] --> [mm] x_0 [/mm] konvergiert die Folge [mm] f(x_n) [/mm] gegen c.

Wohlgemerkt: für jede Folge muß das gelten. Also für die rationalen Folgen, die gegen [mm] x_0 [/mm] konvergieren, genauso wie für die irrationalen.

Nun liegen für eine Umgebung von [mm] x_0 [/mm] die Werte der rationalen und der irrationalen Elemente meist weit auseinander. Nur an zwei Stellen nicht.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]