matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationwirtschaftliche Textaufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differentiation" - wirtschaftliche Textaufgabe
wirtschaftliche Textaufgabe < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

wirtschaftliche Textaufgabe: Differentation. Verständnisfra
Status: (Frage) beantwortet Status 
Datum: 12:42 Mo 20.11.2006
Autor: ragnar79

Aufgabe
Ein Monopolist kann durch Ausdehnen der Produktion seinen Gesamterlös immer mehr steigern, bis er das Maximum des gesamterlöses erreicht hat. Danach sinkt der Gesamterlös wieder ab, wähend die Gesamtkosten weiter steigen. Möchte er den maximalen Gewinn ermitteln, muss er also ein Maximum der Differenz aus Gesamterlös und Gesamtkosten, erzielen.

Gesamterlös: ErlG(x) = 7 * [1 - [mm] \bruch{(x-5)²}{25} [/mm]

Gesamtkosten: KosG(x) = [mm] \bruch{28}{25} [/mm] * x + 1


AUFGABE:
Um welchen Betrag steigt der Gewinn Gew(x) = ErlG(x) - KosG(x) an der Stelle x= x, wenn x um 1% vergrößert wird.
Um welchen Betrag verändert sich der Gewinn an der Stelle x=4, wenn x um 1% verändert wird.


Der Gewinn folgt der Funktion Gew(x) = 6 - [mm] \bruch{7}{25}[(x-5)²+4x] [/mm]  mit der Ableitung Gew'(x) = - [mm] \bruch{7}{25}[2(x-5)+4] [/mm]

FRAGE:
Wie komm ich bitte von ErlG(x) - KosG(x) auf Gew(x) = 6 - [mm] \bruch{7}{25}[(x-5)²+4x] [/mm]  mit der Ableitung Gew'(x) = - [mm] \bruch{7}{25}[2(x-5)+4] [/mm]

Wie muss ich die Rechenschritte ausführen?

        
Bezug
wirtschaftliche Textaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:09 Mo 20.11.2006
Autor: ullim

Hi,

Du musst einfach Gew(x)=ErlG(x)-KosG(x) ausrechnen, dann ergibt sich das von Dir angeführte Ergebnis. Ebenso ergibt sich die 1'-te Ableitung durch einfaches ausrechnen.

mfg ullim

Bezug
        
Bezug
wirtschaftliche Textaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:17 Mo 20.11.2006
Autor: ragnar79

Aufgabe
Ja das ist mir klar das Erlöse-Kosten= Gewinn also konkret

7 * [1 - [mm] \bruch{(x-5)²}{25} [/mm]  - [mm] \bruch{28}{25} [/mm] * x + 1  = Gewinn


Aber wie errechne ich konkret 7 * [1 - [mm] \bruch{(x-5)²}{25} [/mm]  - [mm] \bruch{28}{25} [/mm] * x + 1  Die Einzelnen Schritte sind mir unklar um auf 6 - [mm] \bruch{7}{25}[(x-5)²+4x] [/mm] zu kommen

Bezug
                
Bezug
wirtschaftliche Textaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 14:37 Mo 20.11.2006
Autor: ullim

Hi,

[mm] ErlG=7[1-\bruch{(x-5)²}{25}]=7-\bruch{7}{25}(x-5)^2 [/mm]

[mm] KosG=\bruch{28}{25}x+1 [/mm]

[mm] ErlG-KosG=[7-\bruch{7}{25}(x-5)^2]-(\bruch{28}{25}x+1)=6-\bruch{7}{25}[(x-5)^2+4x] [/mm]

mfg ullim

Bezug
                        
Bezug
wirtschaftliche Textaufgabe: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:48 Di 21.11.2006
Autor: ragnar79

Aufgabe
Erlös - Kosten = Gewinn ist mit klar. Nur wie komme ich zu dem Endergbenis? Das war meine Frage. Rechenschritte? Ich komme einfach nicht drauf.

Würde mich über Hilfe freuen

Bezug
                                
Bezug
wirtschaftliche Textaufgabe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Do 23.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]