matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra Sonstigeswindschiefe Geraden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra Sonstiges" - windschiefe Geraden
windschiefe Geraden < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

windschiefe Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:26 Mi 22.01.2014
Autor: Thomas_Aut

Aufgabe
Im euklidischen Raum [mm] \mathbb{R}^{3 \times 1} [/mm] seien zwei windschiefe Geraden gegeben.

[mm] g = \mathbb{R} \begin{pmatrix} 1\\2\\1 \end{pmatrix} , h = \begin{pmatrix} 3\\3\\3 \end{pmatrix} + \mathbb{R}\begin{pmatrix} 0\\1\\1 \end{pmatrix}[/mm]

a) Berechne einen normierten Richtungsvektor n der zu g und h orthogonalen Treffergeraden t
b)Ermittle die beiden Schnittpunkte von t mit g und h.
c) Berechne den Abstand dist(g,h)

Hallo,

Ich muss gestehen, dass mir da grade nicht viel einfällt... vielleicht habe ich heute auch einfach nur zuviele Beispiele aus linearer Algebra ausgearbeitet ...

Habt ihr eventuell einen Denkanstoß zu a) ?


Besten Dank und liebe Grüße

Thomas

        
Bezug
windschiefe Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 21:39 Mi 22.01.2014
Autor: Diophant

Hallo,

die gesuchte Treffergerade muss, wie schon der Aufgabenstellung zu entnehmen, auf beiden Geraden orthogonal stehen. Das normierte Kreuzprodukt der beiden Richtungsvektoren sollte da schon einmal bei a) weiterhelfen.

Für b) sehe ich dann eigentlich keinen anderen Weg als ein GS, welches man folgendermaßen ansetzen könnte: von einem beliebigen Punkt auf g lässt man eine Gerade in Richtung von t laufen, so dass sie h schneidet.

c) sollte ja dann kein Problem mehr sein.

Gruß, Diophant

Bezug
        
Bezug
windschiefe Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 21:49 Mi 22.01.2014
Autor: abakus


> Im euklidischen Raum [mm]\mathbb{R}^{3 \times 1}[/mm] seien zwei
> windschiefe Geraden gegeben.

>

> [mm]g = \mathbb{R} \begin{pmatrix} 1\\2\\1 \end{pmatrix} , h = \begin{pmatrix} 3\\3\\3 \end{pmatrix} + \mathbb{R}\begin{pmatrix} 0\\1\\1 \end{pmatrix}[/mm]

>

> a) Berechne einen normierten Richtungsvektor n der zu g und
> h orthogonalen Treffergeraden t
> b)Ermittle die beiden Schnittpunkte von t mit g und h.
> c) Berechne den Abstand dist(g,h)
> Hallo,

>

> Ich muss gestehen, dass mir da grade nicht viel
> einfällt... vielleicht habe ich heute auch einfach nur
> zuviele Beispiele aus linearer Algebra ausgearbeitet ...

>

> Habt ihr eventuell einen Denkanstoß zu a) ?

>
>

> Besten Dank und liebe Grüße

>

> Thomas

Hallo Thomas,
wenn man von zwei Vektoren das Vektorprodukt bildet, erhält man einen Vektor, der auf diesen beiden Vektoren senkrecht steht.
Gruß Abakus

Bezug
                
Bezug
windschiefe Geraden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:15 Mi 22.01.2014
Autor: Thomas_Aut

Danke.

Unglaublich dämlich, dass mir das nicht sofort eingefallen ist.

lg

Thomas


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]