matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-Analysiswieso unbedingt erweitern?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - wieso unbedingt erweitern?
wieso unbedingt erweitern? < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

wieso unbedingt erweitern?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:11 Mo 25.10.2004
Autor: Tracer

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


habe die aufgabe [mm] \bruch{a²+b²}{a²-b²} [/mm] - [mm] \bruch{(a-b)²}{a²+2ab+b²} [/mm]


wenn man diese aufgabe erweitert und umformt kommt [mm] 2b\bruch{2a²-ab+b²}{(a-b)(a+b)²} [/mm] heraus. aber warum geht diese formel nicht nach der allgemeinen Formel [mm] \bruch{A}{B} [/mm] - [mm] \bruch{C}{D} [/mm] = [mm] \bruch{A*D - B*C}{B*D} [/mm] zu lösen?

wenn ich die oben genannte formel nach auf diese weise löse komme ich auf  [mm] \bruch{(a²+b²) * (a²+2ab+b²)-(a²-b²)(a-b)²}{(a²-b²)(a+b)²} [/mm] was dann ausmultipliziert [mm] \bruch{a^4+2a³b+a²b^2+a^2b^2+2ab^3+b^4-a^4 + 2a^3 b-a^2 b^2+a^2 b^2 -2ab^3 +b^4}{a^4 +2a^3b +a^2 b^2 - a^2 b^2 - 2ab^3 - b^4} [/mm]  ergibt

zusammengefasst kommt dann allederings [mm] 2b\bruch{(a^3 + a^2b + b^3}{a^4 + 2a^3 b - 2ab^3 - b^4} [/mm] heraus. jemand eine lösung dafür oder bin ich einfach zu blöd zum rechnen?

        
Bezug
wieso unbedingt erweitern?: Ausrechnen+Tipp:3.bin. Formel
Status: (Antwort) fertig Status 
Datum: 03:01 Mo 25.10.2004
Autor: Marcel

Hallo Tracer,

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
>
> habe die aufgabe [mm]\bruch{a²+b²}{a²-b²}[/mm] -
> [mm]\bruch{(a-b)²}{a²+2ab+b²} [/mm]
>  
>
> wenn man diese aufgabe erweitert und umformt kommt
> [mm]2b\bruch{2a²-ab+b²}{(a-b)(a+b)²}[/mm] heraus. aber warum geht
> diese formel nicht nach der allgemeinen Formel [mm]\bruch{A}{B}[/mm]
> - [mm]\bruch{C}{D}[/mm] = [mm]\bruch{A*D - B*C}{B*D}[/mm] zu lösen?
>  
> wenn ich die oben genannte formel nach auf diese weise löse
> komme ich auf  [mm]\bruch{(a²+b²) * (a²+2ab+b²)-(a²-b²)(a-b)²}{(a²-b²)(a+b)²}[/mm]
> was dann ausmultipliziert
> [mm]\bruch{a^4+2a³b+a²b^2+a^2b^2+2ab^3+b^4-a^4 + 2a^3 b-a^2 b^2+a^2 b^2 -2ab^3 +b^4}{a^4 +2a^3b +a^2 b^2 - a^2 b^2 - 2ab^3 - b^4}[/mm]
>  ergibt

Also: Deine allgemeine Formel geht hier natürlich auch!
Zu deiner Rechnung: [ok] :-)
  

> zusammengefasst kommt dann allederings [mm]2b\bruch{(a^3 + a^2b + b^3}{a^4 + 2a^3 b - 2ab^3 - b^4}[/mm]

[notok]

Also: Dein Nenner ist korrekt. Schaun wir uns mal den Zähler an:
[mm]\red{a^4}+2a³b+\underbrace{a²b^2+a^2b^2}_{=2a²b²}+\red{2ab^3}+\green{b^4}\red{-a^4 }+ 2a^3 b\underbrace{-a^2 b^2+a^2 b^2}_{=0} \red{-2ab^3} \green{+b^4}[/mm]
[mm] $=\green{2b^4}+4a^3b+2a²b²=2b(b^3+2a^3+a²b)$ [/mm]

Zusammengefasst erhält man also:
[mm] $(\star)=\bruch{2b(b^3+\red{2}a^3+a²b)}{a^4 + 2a^3 b - 2ab^3 - b^4}$ [/mm]

> heraus. jemand eine lösung dafür oder bin ich einfach zu
> blöd zum rechnen?

So, und jetzt zu deinem (vermutlich) eigentlichen Problem:
Wir lösen die Aufgabe anders, und zwar, indem wir den jeweiligen Nenner als Produkt schreiben und dann mit dem Hauptnenner weiterrechnen:

[mm] $\bruch{a²+b²}{a²-b²}-\bruch{(a-b)²}{a²+2ab+b²}$ [/mm]  
[mm] $\stackrel{1.\,und\,3.bin.\,Formel}=\bruch{a²+b²}{(a+b)(a-b)}-\bruch{(a-b)²}{(a+b)²}=:(\star_1)$ [/mm]
Deswegen ist der Hauptnenner:
$(a-b)(a+b)²$
und man erhält weiter:
[mm] $(\star_1)=\bruch{(a²+b²)(a+b)}{(a+b)²(a-b)}-\bruch{(a-b)³}{(a+b)²(a-b)}$ [/mm]
[mm] $=\bruch{a³+a²b+ab²+b³-a³+3a²b-3ab²+b³}{(a+b)²(a-b)}$ [/mm]
[mm] $=\bruch{2b³+4a²b-2ab²}{a³+a²b-ab²-b³}$ [/mm]

Du fragst dich nun, wie das mit [mm] $(\star)$ [/mm] zusammenhängt. Das ist ganz einfach. Erweitert man nun letzteres mit $(a+b)_$, so folgt:
[mm] $\bruch{2b³+4a²b-2ab²}{a³+a²b-ab²-b³}$ [/mm]
[mm] $=\bruch{(2b³+4a²b-2ab²)(a+b)}{(a³+a²b-ab²-b³)(a+b)}$ [/mm]
[mm] $=\bruch{2ab³+4a³b-2a²b²+2b^4+4a²b²-2ab³}{a^4+a³b-a²b²-ab³+a³b+a²b²-ab³-b^4}$ [/mm]
[mm] $=\bruch{2b^4+4a³b+2a²b²}{a^4+2a³b-2ab³-b^4}$ [/mm]
[mm] $=\bruch{2b(b³+2a³+a²b)}{a^4+2a³b-2ab³-b^4}$ [/mm]

Also das gleiche wie in [mm] $(\star)$. [/mm] Mit anderen Worten: [mm] $(\star)$ [/mm] kann man noch mit $(a+b)_$ kürzen.

Liebe Grüße
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]