matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichenweiteres BSP zu NST
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - weiteres BSP zu NST
weiteres BSP zu NST < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

weiteres BSP zu NST: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:52 Do 05.02.2009
Autor: Englein89

Hallo,

diese Aufgaben machen mich einfach wahnsinnig. Kann mir vielleicht jemand an dieser Aufgabe erläutern, wie ich das mit System lösen kann? Ich komme meistens auf 1 oder 2 Nullstellen, aber dann weiß ich nicht wohin damit und ob ich zB auch 2 Ergebnisse in eine Gleichung setzen kann.

Ich habe

[mm] -2xe^{-x^2-y^2}+\lambda [/mm] 4x=0
[mm] -2ye^{-x^2-y^2}+\lambda [/mm] 2y=0
[mm] 2x^2+y^2-1=0 [/mm]

Ich habe Folgendes versucht:

aus [mm] -2xe^{-x^2-y^2} +\lambda [/mm] 4x=0 bekomme ich [mm] 2x(-e^{-x^2-y^2}+\lambda)=0, [/mm] also
x=0 oder [mm] -e^{-x^2-y^2}+\lambda=0 [/mm] also [mm] \lambda=e^{-x^2-y^2} [/mm]

x=0 in Gleichung 3:

[mm] 2x^2+y^2-1=0 [/mm]
also [mm] x^2-1=0 [/mm]
also y=+ oder -1

Ich kann noch die 2. Gleichung umformen:
[mm] 2y(-e^{-x^2-y^2}+\lambda [/mm] y)=0 also y=0

Und nun komme ich nicht weiter. Was kann ich nun machen?

Bitte haut mich nicht.. ich versuche es wirklich, aber ich blicke da einfach nicht durch.

        
Bezug
weiteres BSP zu NST: Antwort
Status: (Antwort) fertig Status 
Datum: 18:10 Do 05.02.2009
Autor: MathePower

Hallo Englein89,

> Hallo,
>  
> diese Aufgaben machen mich einfach wahnsinnig. Kann mir
> vielleicht jemand an dieser Aufgabe erläutern, wie ich das
> mit System lösen kann? Ich komme meistens auf 1 oder 2
> Nullstellen, aber dann weiß ich nicht wohin damit und ob
> ich zB auch 2 Ergebnisse in eine Gleichung setzen kann.
>  
> Ich habe
>  
> [mm]-2xe^{-x^2-y^2}+\lambda[/mm] 4x=0
>  [mm]-2ye^{-x^2-y^2}+\lambda[/mm] 2y=0
>   [mm]2x^2+y^2-1=0[/mm]
>  
> Ich habe Folgendes versucht:
>  
> aus [mm]-2xe^{-x^2-y^2} +\lambda[/mm] 4x=0 bekomme ich
> [mm]2x(-e^{-x^2-y^2}+\lambda)=0,[/mm] also
>  x=0 oder [mm]-e^{-x^2-y^2}+\lambda=0[/mm] also
> [mm]\lambda=e^{-x^2-y^2}[/mm]
>  
> x=0 in Gleichung 3:
>  
> [mm]2x^2+y^2-1=0[/mm]
>  also [mm]x^2-1=0[/mm]
>  also y=+ oder -1
>  
> Ich kann noch die 2. Gleichung umformen:
>  [mm]2y(-e^{-x^2-y^2}+\lambda[/mm] y)=0 also y=0


Das muss doch so lauten:

[mm]2y\left(-e^{-x^2-y^2}+\lambda\right)=0[/mm]

Da [mm]y= \pm 1 \not=0[/mm] muß [mm]-e^{-x^2-y^2}+\lambda=0[/mm] sein.


>  
> Und nun komme ich nicht weiter. Was kann ich nun machen?


Die gewonnenen Werte für x bzw. y in die Gleichung einsetzen.

Dann erhältst Du den/die Wert/e für [mm]\lambda[/mm].


>  
> Bitte haut mich nicht.. ich versuche es wirklich, aber ich
> blicke da einfach nicht durch.


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]