matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungwahrscheinlichkitsrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitsrechnung" - wahrscheinlichkitsrechnung
wahrscheinlichkitsrechnung < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

wahrscheinlichkitsrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:32 Sa 26.09.2015
Autor: schule66

Aufgabe
In einer Stadt ist ca. jeder fünfte Autolenker nicht angegurtet. Ein Polizis hält hintereinander drei Autos an. Wie groß ist die Wahrscheinlichkeit, dass
a) alle drei Lenker angegurtet sind,
b) die ersten beiden Lenker angegurtet sind, der dritte jedoch nicht,
c) der erste Lenker angegurtet ist, die anderen beiden jedoch nicht,
d) keiner der drei Lenker angegurtet ist?

meine frage zu dieser Aufgabe ist, ob ich hier jetzt mit insgesamt 15 Lenkern rechnen muss, mit 5 oder mehr. bei meinem rechenvorgang habe ich die angegurteten mit "G" und die nicht angegurteten mit "nG" abgekürzt. so bin ich vorgegangen:
a) P(GGG)= [mm] \bruch{3}{15}*\bruch{2}{14}*\bruch{1}{13}= [/mm] 0,2197...%
b) P(GGnG)= [mm] \bruch{3}{15}*\bruch{2}{14}*\bruch{12}{13}= [/mm] 2,6373...%
c) P(GnGnG)= [mm] \bruch{3}{15}*\bruch{12}{14}*\bruch{11}{13}= [/mm] 14,5054...%
d) P(nGnGnG)= [mm] \bruch{12}{15}*\bruch{11}{14}*\bruch{10}{13}= [/mm] 48,3516...%

Stimmt das so oder mache ich irgendwas falsch?
ich bin auf jede Hilfe angewiesen und bedanke mich schon im voraus!

        
Bezug
wahrscheinlichkitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:31 Sa 26.09.2015
Autor: luis52

Moin, leider sind deine Rechnungen ueberhaupt nicht nachvollziehbar, aber auf alle Faelle falsch.
Bei a) musst du so rechnen: [mm] $P(GGG)=0.8\cdot 0.8\cdot0.8=0.512$ [/mm] (Unabhaengigkeit vorausgesetzt).

Bezug
        
Bezug
wahrscheinlichkitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:20 Sa 26.09.2015
Autor: M.Rex

Hallo
> In einer Stadt ist ca. jeder fünfte Autolenker nicht
> angegurtet.

Und hier steckt doch die Wahrscneinlichkeit für einen nicht angegurteten Fahrer drin, nämlich [mm] \frac{1}{5} [/mm]
Damit sind [mm] \frac{4}{5} [/mm] der Fahrer angegurtet

> Ein Polizis hält hintereinander drei Autos an.
> Wie groß ist die Wahrscheinlichkeit, dass
> a) alle drei Lenker angegurtet sind,
> b) die ersten beiden Lenker angegurtet sind, der dritte
> jedoch nicht,
> c) der erste Lenker angegurtet ist, die anderen beiden
> jedoch nicht,
> d) keiner der drei Lenker angegurtet ist?
> meine frage zu dieser Aufgabe ist, ob ich hier jetzt mit
> insgesamt 15 Lenkern rechnen muss, mit 5 oder mehr. bei
> meinem rechenvorgang habe ich die angegurteten mit "G" und
> die nicht angegurteten mit "nG" abgekürzt. so bin ich
> vorgegangen:
> a) P(GGG)= [mm]\bruch{3}{15}*\bruch{2}{14}*\bruch{1}{13}=[/mm]
> 0,2197...%
> b) P(GGnG)= [mm]\bruch{3}{15}*\bruch{2}{14}*\bruch{12}{13}=[/mm]
> 2,6373...%
> c) P(GnGnG)= [mm]\bruch{3}{15}*\bruch{12}{14}*\bruch{11}{13}=[/mm]
> 14,5054...%
> d) P(nGnGnG)=
> [mm]\bruch{12}{15}*\bruch{11}{14}*\bruch{10}{13}=[/mm] 48,3516...%

>

> Stimmt das so oder mache ich irgendwas falsch?

Und du gehst von ziehen ohne Zurücklegen aus, aber dieses Experiment ist als mit Zurücklegen anzusehen, denn ob der Fahrer angegurtet ist oder nicht, ist unabhängig vom vorher kontrollierten Fahrer.

Lies dir unebdingt mal das []Kapitel zur Wahrscheinlichkeitsrechnung an, eine bessere Zusammenfassung der Wahrscheinlichkeitsrechnung für die Schule findest du kaum. Aber auch die anderen Kapitel sind super.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]