matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastikwahrscheinlichkeitsverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - wahrscheinlichkeitsverteilung
wahrscheinlichkeitsverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

wahrscheinlichkeitsverteilung: qualitätskontrolle
Status: (Frage) beantwortet Status 
Datum: 18:25 Mo 31.08.2009
Autor: sabs89

Aufgabe
Bei einer Qualitätskontrolle wurde einem Produktionsprozess 30-mal eine Stichprobe von 10 Teilen entnommen und jeweils die Anzahl der fehlerhaften Teile festgestellt. Man erhielt die folgenden absoluten Häufigkeiten.

Anzahl der fehlerhaften Teile:       0     1     2     mehr als 2
absolute Häufigkeit                       22   4     3          1

Ermitteln Sie
a) die Wahrscheinlichkeitsverteilung
b) die Wahrscheinlichkeit für das Ereignis
A: Mindestens für ein fehlerhaftes Teil pro Stichprobe.

Um die Wahrscheinlichkeitsverteilung zu berechnen muss ich doch die absolute Häufigkeit durch 30 dividieren, oder?

doch wie berechnet man b) ?

        
Bezug
wahrscheinlichkeitsverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:29 Mo 31.08.2009
Autor: rabilein1


> doch wie berechnet man b) ?

Meines Erachtens kann man hier gar nichts "berechnen", weil es sich um eine Stichprobe handelt. Bei einer anderen Stichprobe kann das Ergebnis anders ausfallen.

Soviel vorweg. Trotzdem versuche ich mal, der Sache auf die Spur zu kommen.

Du hast 10 mal 30 = 300 Teile untersucht.
Davon waren 22*0 + 4*1 + 3*2 + 1*3 = 13 Teile fehlerhaft.

Also ergab die Stichprobe 4.33 % fehlerhafte Teile.


Jetzt mal umgekehrt gerechnet:
Angenommen, 4.33 % der Teile sind fehlerhaft. Dann sind also 95.67 % fehlerfrei.
Wenn man nun 10 Teile zufällig auswählt, dann wäre die Wahrscheinlichkeit, dass alle 10 Teile fehlerfrei sind: [mm] 0.9567^{10}. [/mm] Das ist etwa 0.6423
Bei 30 solcher 10er-Serien hätten sich also 30*0.6423 [mm] \approx [/mm] 19 fehlerfreie 10er-Serien ergeben müssen. Es waren jedoch 22.

Welchen Schluss soll man daraus ziehen???  [mm] \Rightarrow [/mm]  Wo bereits ein fehlerhaftes Teil ist, da ist ein zweites fehlerhaftes Teil nicht weit.


Bezug
        
Bezug
wahrscheinlichkeitsverteilung: Antwort zu b
Status: (Antwort) fertig Status 
Datum: 23:20 Mo 31.08.2009
Autor: barb

Hallo,

Kannst Du das folgende lösen:

Wie groß ist die Wahrscheinlichkeit, bei einem Wurf mit einem sechsseitigen Würfel eine Zahl zu würfeln, die mindestens zwei oder größer ist?

Das ist meiner Meinung nach dasselbe, was auch bei b) gefragt ist, nur, dass jetzt die Wahrscheinlichkeiten für die Anzahl der fehlerhaften Teile pro Stichprobe statt die W. für die einzelnen Augenzahlen gegeben sind.
Wenn Du die Wahrscheinlichkeitsverteilung hast, kannst Du das Problem genauso lösen wie z.B. die Frage nach der Wahrscheinlichkeit, bei 6 Würfen mit einem Würfel mindestens einmal eine Zahl größer als Zwei zu würfeln.

Das Ergebnis zu b) müßte dann 8/30 sein.

Barb

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]