matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Finanzmathematikvorschüssige Rente
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Finanzmathematik" - vorschüssige Rente
vorschüssige Rente < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vorschüssige Rente: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:28 Do 02.08.2007
Autor: droemmesyn

Aufgabe
Jemand ist verpflichtet, durch 30 Jahre vorschüssig 2 000 Euro zu zahlen (i=5%). Im 12., 13., und 14. Jahr setzt er mit den Zahlungen aus.
a) Durch welchen einmaligen Betrag könnte er am Ende des 14. Jahres das Versäumnis wettmachen?
b) Um wieviel müssten sich dagegen seine Beträge vom 15. bis zum 30. Jahr erhöhen?
c) Wieviel wäre er dagegen am Ende des 30. Jahres schuldig?
d) Falls er weder höhere Raten zahlt noch (zu irgendeinem Zeitpunkt) den ausstehenden Betrag: Um wieviele Jahre verlängert sich dann die Laufzeit?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo an alle, leider komme ich da nicht auf die richtigen Ergebnisse, kann mir bitte jemand helfen. Dankeschön für eure Bemühungen. lg Wolfgang

        
Bezug
vorschüssige Rente: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:42 Do 02.08.2007
Autor: leduart

Hallo
Laut Forenregeln bringst du bitte erst mal deine Ideen ein, zu oft schreiben wir Tips und dann heisst es: das wusste ich schon aber....
gilt auch für deine zweiten post.
Gruss leduart

Bezug
        
Bezug
vorschüssige Rente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:00 Fr 03.08.2007
Autor: droemmesyn

Aufgabe
Jemand ist verpflichtet, durch 30 Jahre vorschüssig 2 000 Euro zu zahlen (i=5%). Im 12., 13., und 14. Jahr setzt er mit den Zahlungen aus.
a) Durch welchen einmaligen Betrag könnte er am Ende des 14. Jahres das Versäumnis wettmachen?
b) Um wieviel müssten sich dagegen seine Beträge vom 15. bis zum 30. Jahr erhöhen?
c) Wieviel wäre er dagegen am Ende des 30. Jahres schuldig?
d) Falls er weder höhere Raten zahlt noch (zu irgendeinem Zeitpunkt) den ausstehenden Betrag: Um wieviele Jahre verlängert sich dann die Laufzeit?  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Den Punkt a) konnte ich selbst rechnen, doch weiter kam ich nicht, bitte kann mir jemande helfen. Bitte den Rechenweg aufschreiben Dankeschön.
[mm] En=2000.(1+0,05).((1+0,05^3-1):(0,05)) [/mm]
En=6620,25
Dies war mein Rechenweg.
lg Wolfgang

Bezug
                
Bezug
vorschüssige Rente: Antwort
Status: (Antwort) fertig Status 
Datum: 08:36 Sa 04.08.2007
Autor: Josef

Hallo Wolfgang,

> Jemand ist verpflichtet, durch 30 Jahre vorschüssig 2 000
> Euro zu zahlen (i=5%). Im 12., 13., und 14. Jahr setzt er
> mit den Zahlungen aus.
> a) Durch welchen einmaligen Betrag könnte er am Ende des
> 14. Jahres das Versäumnis wettmachen?
> b) Um wieviel müssten sich dagegen seine Beträge vom 15.
> bis zum 30. Jahr erhöhen?
> c) Wieviel wäre er dagegen am Ende des 30. Jahres schuldig?
> d) Falls er weder höhere Raten zahlt noch (zu irgendeinem
> Zeitpunkt) den ausstehenden Betrag: Um wieviele Jahre
> verlängert sich dann die Laufzeit?

> Den Punkt a) konnte ich selbst rechnen, doch weiter kam ich
> nicht, bitte kann mir jemande helfen.

>  [mm]En=2000.(1+0,05).((1+0,05^3-1):(0,05))[/mm]
>  En=6620,25



Lieber Wolfgang, hast du auch hier die Lösungen?


Meine Rechnung:

Aufgabe b)

Restwert nach 11 Jahren:

[mm] 2.000*1,05*\bruch{1,05^{11}-1}{0,05} [/mm] = 29.834,25

Neue Rate ab 15. Jahr:

[mm] 29.834,25*1,05^3 [/mm] * [mm] 1,05^{16} [/mm] - R [mm] *1,05\bruch{1,05^{16}-1}{0,05} [/mm] = 0

R = 3.034,97


Aufgabe c)

[mm] 29.834,25*1,05^3 *1,05^{16} [/mm] - [mm] 2.000*1,05*\bruch{1,05^{16}-1}{0,05} [/mm] = ....


Aufgabe d)

[mm] 29.834,25*1,05^3*1,05^n [/mm] - [mm] 2.000*1,05*\bruch{1,05^n -1}{0,05} [/mm] = 0

n = 35,41... zuzüglich Tilgungsfreie Laufzeit von 3 Jahren und vorige Laufzeit = neue  Gesamtlaufzeit abzüglich bisherige Laufzeit von 30 Jahren.



Richtige Lösungen siehe hier


Viele Grüße
Josef


Alle Angaben ohne Gewähr auf Richtigkeit; doch wer nicht wagt, der nicht gewinnt ...


Bezug
                        
Bezug
vorschüssige Rente: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:31 So 05.08.2007
Autor: droemmesyn

Aufgabe
Jemand ist verpflichtet, durch 30 Jahre vorschüssig 2 000 Euro zu zahlen (i=5%). Im 12., 13., und 14. Jahr setzt er mit den Zahlungen aus.
a) Durch welchen einmaligen Betrag könnte er am Ende des 14. Jahres das Versäumnis wettmachen?
b) Um wieviel müssten sich dagegen seine Beträge vom 15. bis zum 30. Jahr erhöhen?
c) Wieviel wäre er dagegen am Ende des 30. Jahres schuldig?
d) Falls er weder höhere Raten zahlt noch (zu irgendeinem Zeitpunkt) den ausstehenden Betrag: Um wieviele Jahre verlängert sich dann die Laufzeit?
Lösung: 6620,25 - 581,76 - 14451,18

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Den Punkt a) konnte ich selbst rechnen, doch weiter kam ich nicht, bitte kann mir jemande helfen.
ich komme da einfach nicht weiter ... :o( ... Bitte den Rechenweg aufschreiben Dankeschön.
[mm] En=2000.(1+0,05).((1+0,05^3-1):(0,05)) [/mm]
En=6620,25
Dies war mein Rechenweg.
lg Wolfgang

Bezug
                                
Bezug
vorschüssige Rente: konkrete Rückfragen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:39 So 05.08.2007
Autor: Loddar

Hallo Wolfgang!


Nur durch wiederholtes Posten derselben Aufgabenstellung hier wirst Du auch nicht weiterkommen. Zudem hat Dir Josef hier bereits einige Ansätze geliefert. Wenn daran noch etwas unklar sein sollte, stelle bitt konkrete Rückfragen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]