matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRelationen# von  Äquivalenzrelation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Relationen" - # von Äquivalenzrelation
# von Äquivalenzrelation < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

# von Äquivalenzrelation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:04 Sa 01.12.2007
Autor: theeye3

Aufgabe
Sei A [mm] \subseteq [/mm] M. Dann ist [mm] Z:=\{A,M \backslash A\} [/mm] eine Zerlegung von M, die wiederum eine Äquivalenz  ~z induziert. Geben sie #~z in Abhängigkeit von m:= #M und a:=#A an.

Mir fehlt so die richtige Idee für die Aufgabe.
Das eine Zerlegung gleich einer Äquivalenzrelation ist, dass ist klar.
Aber bei der in der Aufgabe angegeben Zerlegung habe ich schon ein Verständnisproblem. Ich dachte immer eine Zerlegung ist eine Teilmenge einer Menge dessen Elemente äquivalent sind. Aber inder Zerlegung Z sind ja doch zwei Teilmengen gegeben oder nicht. Wie kann dies eine Zerlegung sein.

Und bei der Kardinalität der Äquivalen z müsste sie ja die gleiche Kardinalität haben wie die Zerlegung Z. Da aber dort die Menge A und die Menge M - die Menge A enthalten sind müsste doch die Kardinalität wie bei M sein.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
# von Äquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 15:10 Sa 01.12.2007
Autor: Somebody


> Sei A [mm]\subseteq[/mm] M. Dann ist [mm]Z:=\{A,M \backslash A\}[/mm] eine
> Zerlegung von M, die wiederum eine Äquivalenz  ~z
> induziert. Geben sie #~z in Abhängigkeit von m:= #M und
> a:=#A an.
>  Mir fehlt so die richtige Idee für die Aufgabe.
>  Das eine Zerlegung gleich einer Äquivalenzrelation ist,
> dass ist klar.
>  Aber bei der in der Aufgabe angegeben Zerlegung habe ich
> schon ein Verständnisproblem. Ich dachte immer eine
> Zerlegung ist eine Teilmenge einer Menge dessen Elemente
> äquivalent sind. Aber inder Zerlegung Z sind ja doch zwei
> Teilmengen gegeben oder nicht. Wie kann dies eine Zerlegung
> sein.
>  
> Und bei der Kardinalität der Äquivalen z müsste sie ja die
> gleiche Kardinalität haben wie die Zerlegung Z. Da aber
> dort die Menge A und die Menge M - die Menge A enthalten
> sind müsste doch die Kardinalität wie bei M sein.

Wie wärs mit folgender Interpretation der Aufgabenstellung: Die Zerlegung [mm] $\{A,M\backslash A\}$ [/mm] von $M$ ergibt eine relativ langweilige Äquivalenzrelation [mm] $\sim [/mm] z$ die $M$ also nur in zwei Teilmengen $A$ und [mm] $M\backslash [/mm] A$ von je bezüglich [mm] $\sim [/mm] z$ äquivalenten Elementen zerlegt. [mm] $\sim [/mm] z$ ist (in der mengentheoretischen Reduktion des Relationenbegriffes) zudem eine Menge von Paaren, [mm] $\subseteq M^2$. [/mm] Soll [mm] $\sim [/mm] z$ die der diskunkten Zerlegung [mm] $\{A,M\backslash A\}$ [/mm] von $M$ entsprechende Äquivalenzrelation sein, so muss sie jeweils nur zwischen Elementen von $A$ bzw. nur zwischen Elementen von [mm] $M\backslash [/mm] A$ gelten:

[mm]\sim z := \left\{(x,y)\in M^2\mid \text{entweder } x,y\in A\right \text{ oder } x,y\in M\backslash A\}=A^2\cup (M\backslash A)^2[/mm]


Nun wirst Du nach der Kardinalität von [mm] $\sim [/mm] z$ gefragt, also nach der Kardinalität dieser Menge von Paaren aus [mm] $M^2$. [/mm]

Bezug
                
Bezug
# von Äquivalenzrelation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:23 Sa 01.12.2007
Autor: theeye3

Also da würde ich jetzt schließen, dass die Kardinalität der Äquivalenzrelation sich aus [mm] m^2+a^2 [/mm] errechnen lässt oder?

Bezug
                        
Bezug
# von Äquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 15:39 Sa 01.12.2007
Autor: Somebody


> Also da würde ich jetzt schließen, dass die Kardinalität
> der Äquivalenzrelation sich aus [mm]m^2+a^2[/mm] errechnen lässt
> oder?

Nicht ganz, denn die Kardinalität von [mm] $\left|A^2\cup (M\backslash A)^2\right|$ [/mm] ist doch

[mm]\left|A^2\cup (M\backslash A)^2\right|=\left|A^2\right|+\left|(M\backslash A)^2\right|=|A|^2+|M\backslash A|^2=a^2+(m-a)^2[/mm]


Ob ich die Aufgabe aber tatsächlich richtig interpretiert habe, ist wieder eine andere Frage...


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]