matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisvollständige induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - vollständige induktion
vollständige induktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständige induktion: aufgabe dringend
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:10 Mo 25.04.2005
Autor: rotschi

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo stecke fest. hab es halt nicht drauf
soll beweisen das für [mm] x_{1}<1 [/mm] und für  [mm] x_{2}>1 [/mm]  für [mm] x_{i}>0 [/mm] gilt


[mm] x_{1}+x_{2}>1+x_{2}x_{1} [/mm]

habe mich bis jetzt nur im kreis gedreht

z.b:  [mm] \bruch{x_{1}}{x_{2}}-x_{1} >\bruch{1}{x_{2}}-1 [/mm]

aber komme ich nicht weiß nicht ob das reicht
danke im vorraus



        
Bezug
vollständige induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:25 Mo 25.04.2005
Autor: Marc

Hallo rotschi,

>  Hallo stecke fest. hab es halt nicht drauf
>  soll beweisen das für [mm]x_{1}<1[/mm] und für  [mm]x_{2}>1[/mm]  für
> [mm]x_{i}>0[/mm] gilt
>  
>
> [mm]x_{1}+x_{2}>1+x_{2}x_{1}[/mm]
>  
> habe mich bis jetzt nur im kreis gedreht
>  
> z.b:  [mm]\bruch{x_{1}}{x_{2}}-x_{1} >\bruch{1}{x_{2}}-1[/mm]
>  
> aber komme ich nicht weiß nicht ob das reicht

Das würde sicher nicht reichen, denn diese Gleichung ist ja noch viel komplizierter als die Ausgangsgleichung ;-)

An deiner Stelle würde ich versuchen, Gegenbeispiele zu finden, denn die Behauptung ist falsch -- oder du hast dich in den Voraussetzungen bzw. der bei der Ungleichung vertippt. Korrektur: Siehe mathemaduenns Antwort.

Und was hat das überhaupt mit vollständiger Induktion zu tun? Also, irgendetwas stimmt nicht mit deiner Aufgabenstellung.

Viele Grüße,
Marc

Bezug
                
Bezug
vollständige induktion: stimmt doch oder?
Status: (Antwort) fertig Status 
Datum: 14:22 Mi 27.04.2005
Autor: mathemaduenn

Hallo Marc,

> An deiner Stelle würde ich versuchen, Gegenbeispiele zu
> finden, denn die Behauptung ist falsch -- oder du hast dich
> in den Voraussetzungen bzw. der bei der Ungleichung
> vertippt.

[mm]x_1+x_2>1+x_1*x_2[/mm] unter den Bedingungen [mm] x_1>0 [/mm] , [mm] x_2>1 [/mm] , [mm] x_1<1 [/mm]
Ich denke schon das das stimmt.
Mit [mm]x_3:=x_2+1[/mm] wird die Ausgangsgleichung zu:
[mm]x_1+x_3+1>1+x_1+x_1*x_3[/mm] unter den Bedingungen [mm] x_1>0 [/mm] , [mm] x_3>0 [/mm] , [mm] x_1<1 [/mm]
Und da steht's ja fast schon da.
Aber mit vollständiger Induktion hat das in der Tat nichts zu tun.
viele grüße
Christian

Bezug
                        
Bezug
vollständige induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:29 Mi 27.04.2005
Autor: Marc

Hallo Christian,

> > An deiner Stelle würde ich versuchen, Gegenbeispiele zu
> > finden, denn die Behauptung ist falsch -- oder du hast dich
> > in den Voraussetzungen bzw. der bei der Ungleichung
> > vertippt.
>  [mm]x_1+x_2>1+x_1*x_2[/mm] unter den Bedingungen [mm]x_1>0[/mm] , [mm]x_2>1[/mm] ,
> [mm]x_1<1[/mm]
> Ich denke schon das das stimmt.

Mist, klar. Ich hatte das "Gegenbeispiel" [mm] $x_1=0.5$ [/mm] und [mm] $x_2=1.5$ [/mm] im Sinn, aber warum ich dachte, dass 2<1.75 ist, ist mir jetzt ein Rätsel...
Danke für die Richtigstellung :-)

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]