matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaschinenbauvollständige Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Maschinenbau" - vollständige Induktion
vollständige Induktion < Maschinenbau < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständige Induktion: Bruch---wie lösen???
Status: (Frage) beantwortet Status 
Datum: 20:07 Mo 19.09.2005
Autor: Luke

Hallo und servus,

ich habe diese Aufgabe im Netz gefunden, da ich dieses Thema gerade in einem Mathe-Vorbereitungskurs behandel.
Ich verstehe den großen Teil der Aufgabe gut, nur der letzte Punkt vom Beweis geht mir nicht ganz in den Kopf.Warum und wie kann ich durch eine Summe über dem Bruch teilen? Vor allem in diesem Beispiel.Und das mit der 3.binomischen Formel ist mir auch nicht einleuchtend.
Für eine Erklärung der ganzen Aufgabe wäre ich auch dankbar, oder für Denkansätze, da ich mir schon länger den Kopf drüber zerbreche.
Ps.:was soll unter Punkt 1 durch x-1 teilbar, das ist doch irrelevant für die Aufgabe, es geht doch um x-y oder???

Behauptung:
für alle n,x,y (x¹y) aus N ist xn+1 + xny - xyn - yn+1 durch x-y teilbar


Beweis:

Die Aussage für n=1:
x2 + xy - xy - y2 = x2 - y2 = (x+1)(x-1) ist durch x-1 teilbar,
ist sicher richtig
  
Schluss A(n) auf A(n+1):
Wir beginnen bei dem Term für A(n), verändern seine Gestalt so, dass man die Induktionsvoraussetzung verwenden kann.

xn+2 + xn+1y - xyn+1 - yn+2 =
x(xn+1 + xny - yn+1 - xyn) + x2yn - yn+2 =
x(xn+1 + xny - yn+1 - xyn) + yn(x2 - y2)

Der erste Summand ist unter der Annahme der Richtigkeit von A(n) durch (x-y) teilbar, der zweite Summand wegen der 3ten binomischen Formel, damit ist die Summe durch (x-y) teilbar; also ist A(n+1), wenn A(n) richtig ist, ebenfalls richtig

Ich  habe hier einige Threads durchsucht, aber leider nichts zu diesem Thema gefunden.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Danke im Vorraus
Luke

        
Bezug
vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 01:00 Di 20.09.2005
Autor: Marc

Hallo Luke,

[willkommenvh]

> ich habe diese Aufgabe im Netz gefunden, da ich dieses
> Thema gerade in einem Mathe-Vorbereitungskurs behandel.
>  Ich verstehe den großen Teil der Aufgabe gut, nur der
> letzte Punkt vom Beweis geht mir nicht ganz in den
> Kopf.Warum und wie kann ich durch eine Summe über dem Bruch
> teilen? Vor allem in diesem Beispiel.Und das mit der

Das verstehe ich nicht ganz, was meinst du? In deinem Beispiel kommt doch gar kein Bruch vor?
Meinst du sowas hier [mm] $\bruch{x-y}{x^2-y^2}=\bruch{x-y}{(x-y)(x+y)}=\bruch{1}{x+y}$? [/mm]

> 3.binomischen Formel ist mir auch nicht einleuchtend.
>  Für eine Erklärung der ganzen Aufgabe wäre ich auch
> dankbar, oder für Denkansätze, da ich mir schon länger den
> Kopf drüber zerbreche.
>  Ps.:was soll unter Punkt 1 durch x-1 teilbar, das ist doch
> irrelevant für die Aufgabe, es geht doch um x-y oder???

Welcher Punkt 1?

>  
> Behauptung:
>  für alle n,x,y (x¹y) aus N ist xn+1 + xny - xyn - yn+1
> durch x-y teilbar

Meinst du hier vielleicht:

[mm] $x^{n+1}+x^n*y-x*y^n-y^{n+1}$ [/mm] ist teilbar durch $x-y$?

Deine Schreibweise ist nicht gerade entgegenkommend für jemanden, der dir gerne helfen will, der aber nicht eine halbe Stunde dafür aufbringen will, die Frage zu entschlüsseln. Du hättest doch wenigstens irgendwie kennzeichnen können, dass es sich hier um Potenzen handelt...
  

> Beweis:
>  
> Die Aussage für n=1:
> x2 + xy - xy - y2 = x2 - y2 = (x+1)(x-1) ist durch x-1
> teilbar,
> ist sicher richtig
>    
> Schluss A(n) auf A(n+1):
> Wir beginnen bei dem Term für A(n), verändern seine Gestalt
> so, dass man die Induktionsvoraussetzung verwenden kann.
>
> xn+2 + xn+1y - xyn+1 - yn+2 =
> x(xn+1 + xny - yn+1 - xyn) + x2yn - yn+2 =
>  x(xn+1 + xny - yn+1 - xyn) + yn(x2 - y2)

In Menschenschreibweise:

[mm] $x^{n+2}+x^{n+1}*y-x*y^{n+1}-y^{n+2}$ [/mm]

[mm] $=x(x^{n+1} [/mm] + [mm] x^n [/mm] y - [mm] y^{n+1} [/mm] - [mm] x*y^n) [/mm] + [mm] x^2 y^n [/mm] - [mm] y^{n+2}$ [/mm]

[mm] $=x(x^{n+1} [/mm] + [mm] x^n*y [/mm] - [mm] y^{n+1} [/mm] - [mm] x*y^n) [/mm] + [mm] y^n(x^2 [/mm] - [mm] y^2) [/mm] $

> Der erste Summand ist unter der Annahme der Richtigkeit von
> A(n) durch (x-y) teilbar, der zweite Summand wegen der 3ten
> binomischen Formel, damit ist die Summe durch (x-y)
> teilbar; also ist A(n+1), wenn A(n) richtig ist, ebenfalls
> richtig

[ok], das ist genau die richtige Argumentation.
  

> Ich  habe hier einige Threads durchsucht, aber leider
> nichts zu diesem Thema gefunden.

Was willst du denn noch wissen?

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]