matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Induktionvollständige Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Induktion" - vollständige Induktion
vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:58 So 18.05.2008
Autor: Aldiimwald

Aufgabe
eigentlich ja klar.....aber:

Beweisen Si mit hilfe der vollst. ind.

[mm] \summe_{k=1}^{n}\bruch{1}{(6+k)(7+k)} [/mm] = [mm] \bruch{n}{7(7+n)} [/mm]

n [mm] \in [/mm] N

Also ich hänge...glaube es ist nur noch ne kleinigkeit aber ich habe grade ein brett vor dem kopf hoffe jemand von euch kann mir helfen.

I.A.:

A(1):
[mm] \summe_{k=1}^{1}\bruch{1}{(6+1)(7+1)} [/mm] = [mm] \bruch{1}{7(7+1)} [/mm] (wahr)

I.S:n--> n+1

[mm] \summe_{k=1}^{n+1}\bruch{1}{(6+k)(7+k)} [/mm] = ( [mm] \bruch{n+1}{7(8+n)}) [/mm] =

[mm] \summe_{k=1}^{n}\bruch{1}{(6+k)(7+k)} [/mm] +  [mm] \bruch{1}{(7+n)(8+n)} [/mm] =

[mm] \bruch{n}{7(7+n)} [/mm] + [mm] \bruch{1}{(7+n)(8+n)} [/mm]
und jetzt bekomme ich das irgendwie nicht weiter umgeformt so, dass ich auf [mm] \bruch{n+1}{7(8+n)} [/mm] komme.

Danke schonmal für die Hilfe

Gruß

        
Bezug
vollständige Induktion: Hauptnenner
Status: (Antwort) fertig Status 
Datum: 22:01 So 18.05.2008
Autor: Loddar

Hallo Aldiimwald!


Bringe beide Brüche auf den Hautptnenner $7*(7+n)*(8+n)_$ und fasse zusammen.


Gruß
Loddar


Bezug
                
Bezug
vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:11 So 18.05.2008
Autor: Aldiimwald

dann bekomme ich ja

[mm] \bruch{n (8+n)}{7(7+n) (8+n)} [/mm]  +  [mm] \bruch{1*7(7+n)}{(7+n)(8+n)7(7+n)} [/mm] = [mm] \bruch{n (8+n)+7}{7(7+n) (8+n)} [/mm]

und da hänge ich ich glaube ich hab huete schon zu viele zahlen gesehen und es is spät^^

Bezug
                        
Bezug
vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:20 So 18.05.2008
Autor: abakus


>  dann bekomme ich ja
>  
> [mm]\bruch{n (8+n)}{7(7+n) (8+n)}[/mm]  +  
> [mm]\bruch{1*7(7+n)}{(7+n)(8+n)7(7+n)}[/mm] =
>  
> [mm]\bruch{n (8+n)+7}{7(7+n) (8+n)}[/mm]
>  
> und da hänge ich ich glaube ich hab huete schon zu viele
> zahlen gesehen und es is spät^^

Hallo,
du weißt doch, was laut Induktionsbehauptung herauskommen muss.

Dein letzter Term ergibt nach Ausmultiplizieren im Zähler
[mm]\bruch{n^2+8n+7}{7(7+n) (8+n)}[/mm]
Im Vergleich mit der Induktionsbehauptung hast du im Nenner einen Faktor zu viel (7+n) und im Zähler auch einen zu großen Term. Also musst du sehen, dass sich auch im Zähler (n+7) ausklammern lässt, damit sich das wegkürzt.
(Und da (n+1) im Zähler übrigbleiben soll, würde ich doch einfach mal schauen, ob eventuell [mm] (n+1)(n+7)=n^2+8n+7 [/mm] gelten könnte.....)
Viele Grüße
Abakus


Bezug
                                
Bezug
vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:27 So 18.05.2008
Autor: Aldiimwald

super auf die Idee bin ich noch nicht gekommen den gesuchten bruch um (7+1) zu erweitern dafür hat mir das Auge gefehlt! vielen Dank!

Bezug
                        
Bezug
vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:23 So 18.05.2008
Autor: SorcererBln


Der Zähler ist [mm] 8n+n^2+7 [/mm] und das ist gerade

(7+n)(n+1),

so dass sich (7+n) schließlich herauskürzt!



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]