matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Induktionvollständige Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Induktion" - vollständige Induktion
vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständige Induktion: Fehlersuche
Status: (Frage) beantwortet Status 
Datum: 13:06 Sa 11.11.2006
Autor: Phoney

Aufgabe
Zeigen Sie [mm] $n^2 \le 2^n$ [/mm]      für alle $n [mm] \in \IN$ [/mm] mit $n [mm] \not= [/mm] 3$

Huhu.

Für n+1 klappt es bei mir nicht

Setz es ein

[mm] $2^{n+1} [/mm] = [mm] 2*2^n$ [/mm]
für [mm] 2^n [/mm] die induktionsvoraussetzung
[mm] $2*2^n\le 2n^2 [/mm] = [mm] n^2+n^2 \le n^2+2n+1 [/mm] = [mm] (n+1)^2$ [/mm]

Das ist aber falsch, weil [mm] 2n^2 [/mm] nur groesser als [mm] $(n+1)^2$ [/mm] ist fuer [mm] $n\ge 1-\sqrt{2}$ [/mm] und [mm] $n\le 1+\sqrt{2}$ [/mm]


Kann mir jemand sagen, was ich falsche mache?

Schönen Gruß
Johann

        
Bezug
vollständige Induktion: $\geq$ statt $\leq$
Status: (Antwort) fertig Status 
Datum: 15:26 Sa 11.11.2006
Autor: moudi


> Zeigen Sie [mm]n^2 \le 2^n[/mm]      für alle [mm]n \in \IN[/mm] mit [mm]n \not= 3[/mm]
>  
> Huhu.

Hallo Phoney

>  
> Für n+1 klappt es bei mir nicht
>  
> Setz es ein
>
> [mm]2^{n+1} = 2*2^n[/mm]
> für [mm]2^n[/mm] die induktionsvoraussetzung
>  [mm]2*2^n\le 2n^2 = n^2+n^2 \le n^2+2n+1 = (n+1)^2[/mm]

aber es muss doch heissen:
[mm]2*2^n\ge 2n^2 = n^2+n^2 \ge^{\ast} n^2+2n+1 = (n+1)^2[/mm]

Nun [mm] $\ast$ [/mm] gilt, falls [mm] $n^2\geq [/mm] 2n+1$ das gilt, falls [mm] $n\geq [/mm] 3$, denn die Nullstellen von [mm] $n^2-2n-1$ [/mm] sind [mm] $1\pm\sqrt [/mm] 2$.

mfG Moudi

>  
> Das ist aber falsch, weil [mm]2n^2[/mm] nur groesser als [mm](n+1)^2[/mm] ist
> fuer [mm]n\ge 1-\sqrt{2}[/mm] und [mm]n\le 1+\sqrt{2}[/mm]
>  
>
> Kann mir jemand sagen, was ich falsche mache?
>  
> Schönen Gruß
>  Johann

Bezug
                
Bezug
vollständige Induktion: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:32 Sa 11.11.2006
Autor: Phoney

Mojn.

> > Zeigen Sie [mm]n^2 \le 2^n[/mm]      für alle [mm]n \in \IN[/mm] mit [mm]n \not= 3[/mm]

>  aber es
> muss doch heissen:
>  [mm]2*2^n\ge 2n^2 = n^2+n^2 \ge^{\ast} n^2+2n+1 = (n+1)^2[/mm]

Da htte ich mich vertippt. Aber gut aufgepasst!

> Nun [mm]\ast[/mm] gilt, falls [mm]n^2\geq 2n+1[/mm] das gilt, falls [mm]n\geq 3[/mm],
> denn die Nullstellen von [mm]n^2-2n-1[/mm] sind [mm]1\pm\sqrt 2[/mm].

Ja, aber laut Aufgabe soll das ja für alle n außer n=3 gelten. Warum gilt es also nur noch für n>3? ist meine rechnung denn legitim?
Danke Dir!

Gruß
Phoney

Bezug
                        
Bezug
vollständige Induktion: Induktion ab n=4
Status: (Antwort) fertig Status 
Datum: 15:35 Sa 11.11.2006
Autor: moudi

Hallo Phoney

Für n=1 und n=2 setzt man einfach ein und schaut ob es stimmt.

Die Induktion ist dann erst ab n=4 (Verankerung).

mfg Moudi

Bezug
                                
Bezug
vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:38 Sa 11.11.2006
Autor: Phoney

Hallo nochmals.

Super, jetzt habe ich es begriffen.
Dankeschön!!

Schöne Grüße
Johann :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]