matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisvollständige Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - vollständige Induktion
vollständige Induktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:40 Mi 02.11.2005
Autor: Michael1982

Hallo,
ich habe vollgende Aufgabe bei der ich vollständige Induktion durchführen soll und da hänge ich gerade mächtig fest.

n  [mm] \varepsilon [/mm] N

[mm] \summe_{i=1}^{n} k^2 [/mm] =  [mm] \bruch{n(n+1)(2n+1)}{6} [/mm]

Denn ersten Schritt hab ich noch hinbekommen:
N=1
=> 1=1

Schritt Nummer 2:
n=n+1

[mm] \summe_{i=1}^{n} k^2 [/mm] + [mm] (n+1)^2 [/mm] =  [mm] \bruch{(n+1)(n+2)(2n+3)}{6} [/mm]

So, und ab hier komme ich nicht mehr weiter. Was kann ich denn nun machen um zu beweisen, dass die linke und rechte Seite gleich sind.

Schon mal danke im voraus.

Ich habe diese Frage in keinem anderem Forum gestellt.



        
Bezug
vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:00 Do 03.11.2005
Autor: Michael1982

Ich habe diese Aufgabe eben selber gelöst, man muss ja nur die erste Gleichung (nachdem man sie für n=1 nachgewiesen hat) in die zweite einsetzen. Also für das  [mm] \summe_{i=1}^{n} k^2 [/mm] setzt man in der zweiten Gleichung einfach  [mm] \bruch{n(n+1)(2n+1)}{6} [/mm] ein. Dann rechnet man die linke und die rechte Seite aus und es muss das gleiche rauskommen. Hier noch der Forumsbeitrag der mir sehr weitergehofen hat.  
https://matheraum.de/read?t=97663&v=t

Bezug
                
Bezug
vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:59 Do 03.11.2005
Autor: Herby

Hallo Michael,

dann viel Spaß [huepf] bei den nächsten Aufgaben



lg
Herby

Bezug
        
Bezug
vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 08:27 Do 03.11.2005
Autor: Britta82

hi,

der I.A ist richtig



> Schritt Nummer 2:
>  n=n+1
>  
> [mm]\summe_{i=1}^{n} k^2[/mm] + [mm](n+1)^2[/mm] =  

hier setzt du den I.A ein und mußt zeigen, daß $ [mm] \bruch{n(n+1)(2n+1)}{6} [/mm] $ + [mm] (n+1)^{2}=[/mm]  [mm]\bruch{(n+1)(n+2)(2n+3)}{6}[/mm] ist,

Rechne einfach beide Seiten aus und dann paßt das

LG

Britta

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]