matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Induktionvollst. Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Induktion" - vollst. Induktion
vollst. Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollst. Induktion: Rückfrage und Korrektur
Status: (Frage) beantwortet Status 
Datum: 17:32 Mo 06.02.2012
Autor: Jsassi93

Aufgabe
Man beweise mit vollständiger Induktion....

1.Induktionsannahme: dort setzt man ja n=1
2.Induktionsvoraussetzung: n=m
3.Induktionsbehauptung n=m+1
4.Induktionsbeweis
dort habe ich immer schwierigkeiten..
ist das da so,dass man den ersten Teil aus der Voraussetzung nimmt dort +(m+1)² hintersetzt und dann = 2.Teil aus Voraussetzung + (m+1)²
??
oder war das nur Zufall in einer aufgabe?

        
Bezug
vollst. Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:53 Mo 06.02.2012
Autor: Valerie20

Hallo!

> Man beweise mit vollständiger Induktion....
>  1.Induktionsannahme: dort setzt man ja n=1
>  2.Induktionsvoraussetzung: n=m
>  3.Induktionsbehauptung n=m+1
>  4.Induktionsbeweis
> dort habe ich immer schwierigkeiten..
>  ist das da so,dass man den ersten Teil aus der
> Voraussetzung nimmt dort +(m+1)² hintersetzt und dann =
> 2.Teil aus Voraussetzung + (m+1)²
>  ??
>  oder war das nur Zufall in einer aufgabe?

Das ist von Aufgabe zu Aufgabe unterschiedlich.
Am besten postest du einfach mal eine Aufgabe und beschreibst was du daran nicht verstehst.

Mal zwei einfache beispiele.
Angenommen du sollst die Gaussche Summenformel mit Induktion beweisen:

[mm]\summe_{k=1}^{n}k=\bruch{n \cdot (n+1)}{2} [/mm]

1. Induktionsanfang:

n=1: 1=1 passt.

2. Induktionsvoraussetzung

Behauptung aus 1. gilt für ein [mm]n \in IN[/mm] fest

3. Induktinsschluss

Hier versucht du nun allgemein zu zeigen, dass die Behauptung für alle n>1 gilt.

n→(n+1)

damit müssten wir dann zeigen, dass:

[mm]\summe_{k=1}^{n+1}k=\bruch{(n+1) \cdot ((n+1)+1)}{2} [/mm] ist.

Nun musst du die Summe auf der linken Seite auseinanderziehen:

[mm]\summe_{k=1}^{n+1}k=\summe_{k=1}^{n}k+(n+1)[/mm]

du ziehst also praktisch dein (n+1)-tes Element aus der Summe.
Der Sinn der dahinter steckt, ist der, dass du ja bereits weist, was [mm]\summe_{k=1}^{n}k[/mm] sein soll: [mm]\summe_{k=1}^{n}k=\bruch{n \cdot (n+1)}{2} [/mm] Das ist deine Induktionsvorrausetzung die

für ein n gilt.
Nun müsstest du nur noch einsetzen und schaun ob das richtige Ergebnis herauskommmt.

Das war jetzt ein einfaches Beispiel. Hoffe das hilft dir weiter.

Valerie






Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]