matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Induktionvollst. Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Induktion" - vollst. Induktion
vollst. Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollst. Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:56 So 06.04.2008
Autor: efer

Aufgabe
Man beweise für alle reellen Zahlen x und natürlichen Zahlen k
[mm] \vektor{-x \\ k} [/mm] = [mm] (-1)^{k}\vektor{x+k-1\\k} [/mm]

Mein Problem liegt jetzt darin, dass das x eine reelle Zahl ist.
Was ich also fragen wollte ist, ob ich diese Definition verwenden kann:
[mm] \vektor{x\\k}=\bruch{x!}{k!(x-k)!} [/mm]
oder ob ich nur mit dieser Definition arbeiten darf:
[mm] \vektor{x\\k}=\produkt_{j=1}^{k}\bruch{x-j+1}{j} [/mm]
und weiters wäre ich sehr dankbar für Lösungsansätze!

Danke schonmal im Vorhinein!
LG Eva

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
vollst. Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:18 So 06.04.2008
Autor: leduart

Hallo
Da die Fakultät nur für natürliche Zahlen definiert ist gilt natürlich nur die 2.te Definition.
Dann einfach k=1 einsetzen und normale Induktion.
Gruss leduart

Bezug
                
Bezug
vollst. Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:44 So 06.04.2008
Autor: efer

Ok leuchtet ein.
Bei der Umsetzung happerts noch ein bisschen...
Bis jetzt hab ich mal soviel:
[mm] \vektor{-x\\k+1} [/mm] = [mm] \vektor{-x\\k}\bruch{-x-k}{k+1} [/mm]
= [mm] (-1)^{k+1}{{x+k-1\choose{k}}}\frac{x+k}{k+1} [/mm]
= [mm] (-1)^{k+1}\produkt_{j=1}^{k+1}{\frac{x+k-j}{j}}\frac{x+k}{x-1} [/mm]
soweit alles richtig??
und wie komm ich dann auf das:
= [mm] (-1)^{k+1} {{x+k}\choose{k+1}} [/mm]
?

Lg
eva


Bezug
                        
Bezug
vollst. Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:16 So 06.04.2008
Autor: zahllos

Hallo,

Es ist:
[mm] \vektor{-x \\ k+1}=\produkt_{j=1}^{k+1}\frac{-x+1-j}{j}=\vektor{-x \\ k}\frac{-x+1-k-1}{k+1}= [/mm]  (nach Induktionsannahme)
[mm] =(-1)^k\vektor{x+k-1 \\ k}(-1)\frac{x+k}{k+1}=(-1)^{k+1}\vektor{x+k \\ k+1} [/mm]

(Ich hoffe ich habe alle k und j richtig gesetzt, die Vorschau geht nämlich gerade nicht!)

Bezug
                                
Bezug
vollst. Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:34 So 06.04.2008
Autor: efer

Ok. Es beruhigt mich, dass mein Ansatz richtig war. :)
Jetzt fehlt mir nur noch der letzte Schritt.
Bin scheinbar mit dem Produktzeichen auf Kriegsfuß...
Wie bekomm ich den Bruch in das Produkt?
[mm] \prod_{j=1}^{k}{\frac{x+k-j}{j}}\frac{x+k}{k+1} [/mm]

Danke schonmal!
LG
eva

Bezug
                                        
Bezug
vollst. Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:59 So 06.04.2008
Autor: leduart

Schreib doch einfach den letzten Faktor mal hin, wenn das Produkt bis k+1 geht, also die "richtige Form hat!
Gruss leduart

Bezug
                                                
Bezug
vollst. Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:39 Mo 07.04.2008
Autor: efer

.. kann ja sein, dass ich total auf der Leitung steh.. komm irgendwie nicht zu Lösung...
also wenn ich das so ausschreib wie du sagst schaut das bei mir so aus:
[mm] {{x+k}\choose{k+1}}=\prod_{j=1}^{k+1}{\frac{x+k-j+1}{j}} [/mm]
[mm] =\frac{x+k}{1} \frac{x+k-1}{2}...\frac{x+1}{k} \frac{x}{k+1} [/mm]
und wie kann ich den Bruch jetzt reinbringen?
[mm] \frac{x+k}{k+1} [/mm]
ich seh da keinen Zusammenhang :(

Lg Eva

Bezug
                                                        
Bezug
vollst. Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:26 Mo 07.04.2008
Autor: angela.h.b.


>  also wenn ich das so ausschreib wie du sagst schaut das
> bei mir so aus:
>  [mm]{{x+k}\choose{k+1}}=\prod_{j=1}^{k+1}{\frac{x+k-j+1}{j}}[/mm]
>  [mm]=\frac{x+k}{1} \frac{x+k-1}{2}...\frac{x+1}{k} \frac{x}{k+1}[/mm]
>  
> und wie kann ich den Bruch jetzt reinbringen?
>  [mm]\frac{x+k}{k+1}[/mm]

Hallo,

schieb mal die Nenner "um einen nach rechts":

>  [mm]{{x+k}\choose{k+1}}=\prod_{j=1}^{k+1}{\frac{x+k-j+1}{j}}[/mm]
>  [mm]=\frac{x+k}{1} \frac{x+k-1}{2}...\frac{x+1}{k} \frac{x}{k+1}[/mm]

[mm] =\frac{x+k}{k+1}* \frac{x+k-1}{1}*...*\frac{x+1}{k-1} *\frac{x}{k} [/mm]

= [mm] \frac{x+k-1}{1}*...*\frac{x+1}{k-1} *\frac{x}{k}*\frac{x+k}{k+1} [/mm]

[mm] =\vektor{x+k-1 \\ k}*\frac{x+k}{k+1} [/mm]

Gruß v. Angela

Bezug
                                                                
Bezug
vollst. Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:18 Mo 07.04.2008
Autor: efer

Aaaaah! Super!
Endlich gecheckt :D

Danke für eure super Antworten!
LG
Eva

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]