matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastikvertrauensintervall
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - vertrauensintervall
vertrauensintervall < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vertrauensintervall: situation 1 erklärung
Status: (Frage) beantwortet Status 
Datum: 12:03 So 03.03.2013
Autor: Victoria13

Aufgabe
in einem kusntoffverarbeitenden Betrieb werden rote und grüne Plastikeimer produziert. Als Stichprobe werden der laufenden Produktion 100 Eimer entnommen. Genau die Hälfte der Eimer ist rot. Wie groß ist mit einer Sicherheitswarscheinlichkéit von 95% der Anteil der roten Eimer in der Produktion?

Ich habe diese Frage in keinem Forum auf anderen internetseiten gestellt.
Rechnungs- bzw. Lösungsweg haben wir hinter der Aufgabe auf 3 1/2 Seiten. Allerdings können wir den nicht ganz nachvollziehen. Kann uns da jemand weiter helfen ?

        
Bezug
vertrauensintervall: Antwort
Status: (Antwort) fertig Status 
Datum: 16:02 So 03.03.2013
Autor: steppenhahn

Hallo,


> in einem kusntoffverarbeitenden Betrieb werden rote und
> grüne Plastikeimer produziert. Als Stichprobe werden der
> laufenden Produktion 100 Eimer entnommen. Genau die Hälfte
> der Eimer ist rot.


> Wie groß ist mit einer
> Sicherheitswarscheinlichkéit von 95% der Anteil der roten
> Eimer in der Produktion?


>  Rechnungs- bzw. Lösungsweg haben wir hinter der Aufgabe
> auf 3 1/2 Seiten. Allerdings können wir den nicht ganz
> nachvollziehen. Kann uns da jemand weiter helfen ?

Schon, aber wir haben den Lösungsweg ja nicht vorliegen. Da müsstet ihr die Teile hinschreiben, die euch nicht klar sind. Es gibt auch verschiedene Wege das zu lösen, so dass es nicht viel bringen würde, wenn wir euch jetzt irgendeinen hierhin schreiben.


Eigentlich ist das Experiment "100 Eimern zufällig ziehen und zählen wie viele rot sind" eine Binomialverteilung mit $n = 100$ und dem Parameter [mm] $p\in [/mm] [0,1]$.

$p$ gibt an, mit welcher Wahrscheinlichkeit ein roter Eimer gezogen wird. Ihr habt als Stichprobe erhalten:

$k = 50$ (genau die Hälfte der Eimer sind rot).

Ihr sollt nun daraus ein 95%-Vertrauensintervall für den Parameter $p$ bestimmen?

Ihr sollt jetzt vermutlich eine Approximation mit Normalverteilung durchführen?



Viele Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]