matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationvertauschung Limes/Different.
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differentiation" - vertauschung Limes/Different.
vertauschung Limes/Different. < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vertauschung Limes/Different.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:54 Mi 27.02.2013
Autor: theresetom

Aufgabe
Prop.:
Es sei [mm] f_n [/mm] : [a,b] -> [mm] \IR [/mm] stetig differenzierbar. Die folge [mm] (f_n) [/mm] sei punktweise konvergent gegen f:[a,b]-> [mm] \IR [/mm] und die Folge der ABleitungen [mm] (f_n [/mm] ') sei gleichmäßig konvergent. Dann ist f differenzierbar und es gilt
[mm] \forall [/mm] x [mm] \in [/mm] [a,b] : f'(x)= [mm] lim_{n->\infty} [/mm] f'_n(x)

Prop.:
Sei [mm] f_n \in [/mm] C([a,b]) [mm] \cap [/mm] D((a,b)) und [mm] f_n [/mm] ' [mm] \in [/mm] C([a,b])
und [mm] f_n [/mm] -> f [mm] (n->\infty) [/mm] gleichmäßig
[mm] f_n' [/mm] -> g [mm] (n->\infty) [/mm] gleichmäßig
Dann ist f [mm] \in [/mm] D([a,b]) und es gilt f' = g

Ich hab zweimal dieselbe Analysisvorlesung genossen bei 2 verschiedenen Lehrern.  Ist die zweite Proposition eine abgeschwächste version von der Proposition 1? Da da plötzlich verlangt wird, dass [mm] (f_n) [/mm] glm konvergent statt nur punktweise konvergent gegen f ist??
Oder irre ich mich?

        
Bezug
vertauschung Limes/Different.: Antwort
Status: (Antwort) fertig Status 
Datum: 23:11 Mi 27.02.2013
Autor: steppenhahn

Hallo,


> Prop.:
>  Es sei [mm]f_n[/mm] : [a,b] -> [mm]\IR[/mm] stetig differenzierbar. Die

> folge [mm](f_n)[/mm] sei punktweise konvergent gegen f:[a,b]-> [mm]\IR[/mm]
> und die Folge der ABleitungen [mm](f_n[/mm] ') sei gleichmäßig
> konvergent. Dann ist f differenzierbar und es gilt
>  [mm]\forall[/mm] x [mm]\in[/mm] [a,b] : f'(x)= [mm]lim_{n->\infty}[/mm] f'_n(x)

> Prop.:
>  Sei [mm]f_n \in[/mm] C([a,b]) [mm]\cap[/mm] D((a,b)) und [mm]f_n[/mm] ' [mm]\in[/mm] C([a,b])
>  und [mm]f_n[/mm] -> f [mm](n->\infty)[/mm] gleichmäßig

>  [mm]f_n'[/mm] -> g [mm](n->\infty)[/mm] gleichmäßig

>  Dann ist f [mm]\in[/mm] D([a,b]) und es gilt f' = g

Proposition 1 ist die allgemeinere der beiden. Man braucht die gleichmäßige Konvergenz der Funktionenfolge [mm] $(f_n)$ [/mm] nicht. Das allgemeinste Resultat lautet:

a) [mm] $f_n$ [/mm] alle differenzierbar (man braucht NICHT stetig differenzierbar)
b) [mm] $(f_n')$ [/mm] gleichmäßig konvergent gegen g
c) [mm] $(f_n)$ [/mm] ist in EINEM PUNKT punktweise konvergent.
------> [mm] $(f_n)$ [/mm] konv. gleichmäßig gegen eine differenzierbare Grenzfunktion f mit f' = g.

Aus: []S. 271


Viele Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]