matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körperverschiedene Nullstellen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - verschiedene Nullstellen
verschiedene Nullstellen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

verschiedene Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:21 Sa 01.01.2011
Autor: mathequestion2

Aufgabe
Sei [mm]f = X^3 - 3X + 1 \in Q[X][/mm]. Zu zeigen:
a) f ist irreduzibel in Q[X] und hat drei verschiedene Nullstellen in [mm]\IR[/mm].
b) Ist [mm]\alpha\in \IR[/mm] eine Nullstelle, dann sind [mm]\alpha^2 -2[/mm] und [mm]2-\alpha -\alpha^2[/mm] die anderen beiden.
c)  [mm]Q(\alpha)/Q[/mm] ist Galois mit Galoisgruppe [mm]A_3 \cong C_3[/mm].



zu a) Ich verwende Zwischenwertsatz für jede Nullstelle. Geht das auch geschickter?

zu b) Ich habe keine Ahnung. Ich habe versucht die Linearkombination über [mm] $\IC$ [/mm] rückngängig zu machen
[mm] \left( x-\alpha \right) \left( x-{\alpha}^{2}+2 \right) \left( x-2+\alpha+{\alpha}^{2} \right) [/mm]= [mm]{x}^{3}+3\,x{\alpha}^{2}-x{\alpha}^{3}-x{\alpha}^{4}-4\,x+2\,\alphax-4\,{\alpha}^{3}+{\alpha}^{4}+{\alpha}^{5}+4\,\alpha-2\,{\alpha}^{2} [/mm]
So viel weiter hat es mich aber auch nicht gebracht. Kann mir bitte jemand einen Tipp geben?

zu c) so weit bin ich noch nicht.


        
Bezug
verschiedene Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:38 So 02.01.2011
Autor: wieschoo


> Sei [mm]f = X^3 - 3X + 1 \in Q[X][/mm]. Zu zeigen:
>  a) f ist irreduzibel in Q[X] und hat drei verschiedene
> Nullstellen in [mm]\IR[/mm].
>  b) Ist [mm]\alpha\in \IR[/mm] eine Nullstelle, dann sind [mm]\alpha^2 -2[/mm]
> und [mm]2-\alpha -\alpha^2[/mm] die anderen beiden.
>  c)  [mm]Q(\alpha)/Q[/mm] ist Galois mit Galoisgruppe [mm]A_3 \cong C_3[/mm].
>  
>
> zu a) Ich verwende Zwischenwertsatz für jede Nullstelle.
> Geht das auch geschickter?

Das ist schon in Ordnung. Du weißt ja wie ein ein Polynom vom Grad 3 aussieht. Dann kannst du zwischen den Extrema und zwei weiteren Punkten Nullstellen finden.

>  
> zu b) Ich habe keine Ahnung. Ich habe versucht die
> Linearkombination über [mm]\IC[/mm] rückngängig zu machen
> [mm]\left( x-\alpha \right) \left( x-{\alpha}^{2}+2 \right) \left( x-2+\alpha+{\alpha}^{2} \right) [/mm]=
> [mm]{x}^{3}+3\,x{\alpha}^{2}-x{\alpha}^{3}-x{\alpha}^{4}-4\,x+2\,\alphax-4\,{\alpha}^{3}+{\alpha}^{4}+{\alpha}^{5}+4\,\alpha-2\,{\alpha}^{2}[/mm]
>  So viel weiter hat es mich aber auch nicht gebracht. Kann
> mir bitte jemand einen Tipp geben?

Die Idee ist nicht schlecht. Doch so herum sieht man es nicht wirklich. Nimm doch die andere Richtung. Führe doch einfach Polynomdivision durch. Es sollten sich keine reste ergeben. Wichtig: [mm] $0=f(\alpha)=\alpha^3-3\alpha+1$ [/mm] !!!

>  
> zu c) so weit bin ich noch nicht.
>  


Bezug
                
Bezug
verschiedene Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:08 So 02.01.2011
Autor: mathequestion2


> > Sei [mm]f = X^3 - 3X + 1 \in Q[X][/mm]. Zu zeigen:
>  >  a) f ist irreduzibel in Q[X] und hat drei verschiedene
> > Nullstellen in [mm]\IR[/mm].
>  >  b) Ist [mm]\alpha\in \IR[/mm] eine Nullstelle, dann sind
> [mm]\alpha^2 -2[/mm]
> > und [mm]2-\alpha -\alpha^2[/mm] die anderen beiden.
>  >  c)  [mm]Q(\alpha)/Q[/mm] ist Galois mit Galoisgruppe [mm]A_3 \cong C_3[/mm].
>  
> >  

> >
> > zu a) Ich verwende Zwischenwertsatz für jede Nullstelle.
> > Geht das auch geschickter?
>  Das ist schon in Ordnung. Du weißt ja wie ein ein Polynom
> vom Grad 3 aussieht. Dann kannst du zwischen den Extrema
> und zwei weiteren Punkten Nullstellen finden.

Ok. Dann habe ich das richtig.

>  >  
> > zu b) Ich habe keine Ahnung. Ich habe versucht die
> > Linearkombination über [mm]\IC[/mm] rückngängig zu machen
> > [mm]\left( x-\alpha \right) \left( x-{\alpha}^{2}+2 \right) \left( x-2+\alpha+{\alpha}^{2} \right) [/mm]=
> >
> [mm]{x}^{3}+3\,x{\alpha}^{2}-x{\alpha}^{3}-x{\alpha}^{4}-4\,x+2\,\alphax-4\,{\alpha}^{3}+{\alpha}^{4}+{\alpha}^{5}+4\,\alpha-2\,{\alpha}^{2}[/mm]
>  >  So viel weiter hat es mich aber auch nicht gebracht.
> Kann
> > mir bitte jemand einen Tipp geben?
>  Die Idee ist nicht schlecht. Doch so herum sieht man es
> nicht wirklich. Nimm doch die andere Richtung. Führe doch
> einfach Polynomdivision durch. Es sollten sich keine reste
> ergeben. Wichtig: [mm]0=f(\alpha)=\alpha^3-3\alpha+1[/mm] !!!

Also ich kann [mm]x^3-3x+1=(x-2+a+a^2)(x-a^2+2)(x-a)[/mm] schreiben. Damit sind das alle Nullstellen.

>  >  
> > zu c) so weit bin ich noch nicht.

Jetzt wäre ich soweit. Ich habe doch den Zerfällungskörper
[mm]L=\IQ(\alpha,\alpha^2-2,2-\alpha-\alpha^2)[/mm]. Wie geht das Weiter? Ich muss zeigen, dass die Erweiterung normal und separabel ist. Separabel ist sie ja, weil keine doppelte Nullstelle vorliegt. Und nomal ist sie, weil in L das Polynom in lineare Faktoren zerfällt. Reicht das?
wie kann ich die Verbindung von der Erweiterung zu [mm]A_3\cong S_3[/mm] herstellen. Ich muss ja zeigen, dass die Erweiterungs isomorph zu [mm]S_3[/mm] ist. Also reicht zu zeigen, dass sie nur 6=1*2*3 Elemente hat. Doch wie geht das?
Kann mir da bitte jemand helfen.


Bezug
                        
Bezug
verschiedene Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:27 So 02.01.2011
Autor: felixf

Moin!

>  Jetzt wäre ich soweit. Ich habe doch den
> Zerfällungskörper
>  [mm]L=\IQ(\alpha,\alpha^2-2,2-\alpha-\alpha^2)[/mm]. Wie geht das

Und du solltest sofort sehen, dass dies gleich [mm] $\IQ(\alpha)$ [/mm] ist.

> Weiter? Ich muss zeigen, dass die Erweiterung normal und
> separabel ist. Separabel ist sie ja, weil keine doppelte
> Nullstelle vorliegt.

Insbesondere: weil [mm] $\IQ$ [/mm] Charakteristik 0 hat.

> Und nomal ist sie, weil in L das
> Polynom in lineare Faktoren zerfällt.
> Reicht das?

Nein. Wichtig ist, dass $L$ ein Zerfaellungskoerper ueber [mm] $\IQ$ [/mm] ist. Also der kleinste Koerper, ueber dem das Polynom in Linearfaktoren zerfaellt.

> wie kann ich die Verbindung von der Erweiterung zu [mm]A_3\cong S_3[/mm]
> herstellen. Ich muss ja zeigen, dass die Erweiterungs
> isomorph zu [mm]S_3[/mm] ist. Also reicht zu zeigen, dass sie nur
> 6=1*2*3 Elemente hat. Doch wie geht das?

Falls du schon weisst, dass eine separable normale Erweiterung Galoissch ist und somit $[L : [mm] \IQ]$ [/mm] Automorphismen besitzt, kannst du das sofort hinschreiben. Dazu eine Frage an dich: wieviele Gruppen der Ordnung 3 kennst du denn?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]