matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastikvereinigung/schnitt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - vereinigung/schnitt
vereinigung/schnitt < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vereinigung/schnitt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:52 Sa 22.10.2005
Autor: bobby

Hallo!
Ich habe gerade mit Stochastik angefangen...
Bei folgender Frage meine ich zwar die Antwort zu wissen, aber mir fehlt noch der Beweis dazu, wo ich aber einfach nicht weiterkomme...

Bezeichne mit R die Menge aller achsenparallelen Rechtecke im [mm] \IR^{2}, [/mm] die zwei fest vorgegebene Punkte [mm] a,b\in\IR^{2} [/mm] enthalten. Bestimme mit Beweis [mm] \capR [/mm] und [mm] \cupR. [/mm]

Meiner Meinung nach ist [mm] \capR= [/mm] die Strecke zwischen a und b.
Und [mm] \cupR=\IR^{2}, [/mm] aber wenn das so wäre mit der Vereinigung, dann würden doch auch alle Rechtecke, die nicht achsenparallel sind mit eingeschlossen, oder? Beim Schnitt bin ich mir ziemlich sicher, allerdings fehlt mir noch zu beidem der Beweis... Ich abe mir das ganze einfach bildlich vorgestellt um das Ergebnis zu erhalten, aber ein Bild reicht ja auch nicht aus...HILFE

        
Bezug
vereinigung/schnitt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:10 Sa 22.10.2005
Autor: danielinteractive

Soll wahrsch. so aussehen:

> Bezeichne mit R die Menge aller achsenparallelen Rechtecke
> im [mm]\IR^{2},[/mm] die zwei fest vorgegebene Punkte [mm]a,b\in\IR^{2}[/mm]
> enthalten. Bestimme mit Beweis [mm]\cap R[/mm] und [mm]\cup R.[/mm]
>  
> Meiner Meinung nach ist [mm]\cap R=[/mm] die Strecke zwischen a und
> b.
>  Und [mm]\cup R=\IR^{2},[/mm] aber wenn das so wäre mit der
> Vereinigung, dann würden doch auch alle Rechtecke, die
> nicht achsenparallel sind mit eingeschlossen, oder? Beim
> Schnitt bin ich mir ziemlich sicher, allerdings fehlt mir
> noch zu beidem der Beweis... Ich abe mir das ganze einfach
> bildlich vorgestellt um das Ergebnis zu erhalten, aber ein
> Bild reicht ja auch nicht aus...HILFE


Bezug
        
Bezug
vereinigung/schnitt: Rechtecke
Status: (Antwort) fertig Status 
Datum: 15:30 Sa 22.10.2005
Autor: danielinteractive

Hallo Bobby!

a) [mm] \cap R [/mm] müsste meiner Meinung nach das Rechteck mit den Punkten a,b als Eckpunkten sein (R(a,b)). Das ist aber nur dann eine Gerade, wenn a,b die gleichen x- oder y-Koordinaten haben! (nochmal aufzeichnen, die Rechtecke dürfen ja nur achsenparallel sein.)
Beweisskizze: - nimm ein [mm]\in R(a,b)[/mm] und zeige, dass es dann im Schnitt liegen muss. - anschließend ein [mm]x \in \IR^2 \setminus R(a,b)[/mm] und zeige, dass es ein Rechteck mit a,b gibt, dass nicht x enthält.
(Hier hilft sicher wieder eine Skizze!)

b) Bin ebenfalls für [mm]\cup R = \IR^2[/mm]. Beweis: Die Richtung [mm] \subset [/mm] ist klar. Für [mm]\supset [/mm] : Sei [mm]x=(x_1,x_2) \in \IR^2[/mm]. Wähle nun das achsenparallele Rechteck [mm]R_x:= \{ (x,y) \in \IR^2 \mid |x| \leq \max\{x_1,a_1,b_1\} \wedge |y| \leq \max\{x_2,a_2,b_2\} \}[/mm] Dann sind [mm]a,b,x \in R_x[/mm].

mfg
Daniel



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]